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Abstract

This paper applies a geo-additive generalized linear mixed model to describe
the spatial variation in the prevalence of diarrhea, cough and fever among chil-
dren under 5 years of age using the 1992 Demographic and Health surveys
(DHS) of Malawi and Zambia. The model includes terms of the effects of child
level covariates (age, birth interval and breastfeeding ), household level covari-
ates (crowding and socio-economic status), district level covariates (presence of
primary health care system) and separate components for residual spatial and
non-spatial variation. The residual spatial effects are modelled via Bayesian prior
specifications reflecting spatial heterogeneity globally and relative homogeneity
among neighboring districts. Metrical covariates (mother’s age and child’s age)
are estimated nonparametrically using an appropriate prior. The results show
that district-level socioeconomic characteristics are important determinants of
child morbidity. Independent of other factors, a separate spatial process pro-

duces district clustering of childhood morbidity.

Keywords: Geo-additive models; childhood morbidity; breastfeeding; crowd-

ing; socio-economic status.
1. Introduction

The major diseases of children in Malawi and Zambia are malaria, diarrhea, and
respiratory diseases, particularly pneumonia (Macro International, Inc., 1994).
These three ailments are still a major cause of mortality among children in
many developing countries, particularly in Sub-Saharan Africa. Yet, except for
some descriptive reports by National Statistics offices of the these countries,
few systematic studies of factors that influence the prevalence of malaria, cough
and diarrhea morbidity among young children in these countries were carried
out. The mapping of variation in risk of child morbidity can help improve the
targeting of scarce resources for public health interventions. Bearing in mind
that direct mapping of relevant environmental risk factors (which may vary
considerably in both space and time) is difficult and this has led to investiga-

tions of environmental proxies (Thomson et al., 19965 Diggle et al., 2002). The



use of DHS data in the understanding of childhood morbidity has expanded
rapidly in recent years (Woldemicael, 2001; Yenened et al., 1993; Ryland and
Raggers, 1998; and Widarsa and Munijaya, 1994). However, few attempts have
been made to address explicitly the problems of spatial auto-correlation and
nonlinear effects of metrical covariates in the interpretation of results. Woldem-
icael, 2001 and Walter, 2001 reported a regression analysis of the prevalence
of diarrhea among children in Erithrea and Kenya, including child and mother
level covariates but they failed to control for the spatial autocorrelation in the
data. This study show how the geo-additive model framework (Fahrmeir and
Lang, 2001) can be adapted to extend the analysis of Woldemicael, 2001 and
Walter, 2001 to provide an explanation of the residual spatial variation in the
data and in particular to assess whether the variation is spatially structured. If
this is true, it implies that adjusted prevalence are similar among neighboring
districts, then the possibly explanation must be partly environmental. If not, a
more likely explanation is that the residual spatial variation is induced by vari-
ation in unmeasured districts-specific factors. A rationale is that a spatial effect
is usually a surrogate of many unobserved influences, some of them may obey a
strong spatial structure and others may be present only locally. By estimating a
structured and an unstructured effect we attempt to separate these effects. As a
side effect we are able to assess to some extent the amount of spatial dependence
in the data by observing which of the two effects is larger. If the unstructured
effect exceeds the structured effect, the spatial dependence is smaller and vice
versa. Such models are common in spatial epidemiology, see e.g. Besag et al.

(1991).

The modelling framework implemented in BayesX (Brezger et al., 2002) is the
following. Consider regression situations, where observations (y;,z;,w;), @ =
1,...,n, on a metrical response y, a vector z = (z1,...,z,) of metrical covari-
ates, times scales or spatial covariates and a vector w = (wq,...,w,) of further
covariates, in which categorical covariates, are often given. The generalized ad-

ditive modelling framework (Hastie and Tibshirani, 1990) assumes that, given



x; and w;, the distribution of the response y; belongs to an exponential fam-
ily, with mean u; = E(y;|z;, w;) linked to an additive semiparametric predictor
wi = h(n),mi = fi(zn) + -+ + fp(zip) + w)y, where h is a known response
function, and f1,..., f, are unknown nonlinear smooth functions of the covari-
ates to be estimated. In this application, we have probit link function for the
three ailments at each location (districts), enabling the inclusion of an addi-
tional, unstructured spatial effects between locations. We assume that y; given

the covariates and unknown parameters are independent.
2. Data and methods

The success of any policy or health care intervention depends on a correct un-
derstanding of the socioeconomic, environmental and cultural factors that de-
termine the occurrence of diseases and deaths. Until recently, any morbidity
information available was derived from clinics and hospitals. Information on the
incidence of diarrhea, malaria and pneumonia obtained from hospitals represents
only a small proportion of all illnesses, because many cases do not seek medical
attention (Black, 1984). Thus, the hospital records may not be appropriate for
estimating the incidence of diarrhea for programme developments (Woldemicael,

2001).

The Demographic and Health survey (DHS) programme of Malawi and Zambia
conducted in 1992, is a first attempt to obtain population-based morbidity data.
Bearing in mind that the DHS data only permit one to attribute child morbidity

to specific causes for the last two weeks before the surveys.

Table 2.1 Distribution of the response variables.

Response I Malawi No of cases  Percent “ Zambia  No of cases Percent
Diarrhea 0 2846 77.76 0 4069 77.11

1 814 22.24 1 1208 22.89
Fever 0 2136 58.36 0 2902 54.99

1 1524 41.64 1 2375 45.01
Cough 0 2000 54.70 0 2800 53.15

1 1656 45.30 1 2468 46.85
Total 3660 5268

Individual data record was constructed for 3660 children in Malawi and 5268



children in Zambia. Each record represents a child and consists of morbidity
information and a list of covariates. Table 2.1 shows the distribution of diarrhea,
fever and cough morbidity during the last two weeks before the interview (DHS,

1992).

We use a geo-additive logistic analyzes on the probability of a child being ill
with malaria, cough and diarrhea during the reference period to determine the
socio-economic, demographic variables that are associated with these three ail-
ments while simultaneously controlling for spatial dependence in the data and
possibly nonlinear effects of covariates. The model allows us to borrow streng
from neighboring areas in order to obtain estimates for areas that may, on their
own, have inadequate sample sizes. The findings are robust with respect to the

specification of the prior distribution.

The response variable in this application is defined as

1: if child 7 was ill during the reference period ¢
Yit =
0: if child ¢ survives the illness,
We analyzed and compared simpler parametric probit model and probit model

with dynamic and spatial effects

pr(yie = La3,) = o(mit)
for the probability of falling ill at month ¢ (i.e. we model the conditional prob-
ability of a child falling ill of diarrhea or cough or fever, given child’s age in

months, the district where the child live, and X, with the following predictors:
M1: ;e = X108
M2: nit = fl (age) + f2 (mab) + funstr (dZSt) + fstr (dlSt) + X{tﬂ

The fixed effects in model M1 include all covariates with constant fixed effects.
In comparing the results of models M1 and M2, it turned out that model M2 is
superior in terms of the Deviance Information Criteria(DIC) [Spiegelhalter et.
al., 2002] which may be used for model comparison (See table 8). Apart from
the superiority of model M2 in the DIC, it accounts also for the unobserved

heterogeneity that might exist in the data, all of which cannot be captured by



the covariates (see, Madise et al., 1999). The effects of f; and f, are modeled

by cubic penalized splines (P-splines) with second order random walk penalty.

For the spatial effect fs-(s) we experimented with different prior assumptions.
For both countries we estimated models where either a structured or an unstruc-
tured effect was included as well as a model where both effects were included.
Based on these results we found clear evidence for both countries of spatial
correlation among neighboring districts. Hence, Markov random field priors was
used for fg(s). The analysis was carried out using BayesX-version 0.9 (Brezger
et al., 2002), a software for Bayesian inference based on Markov Chain Monte
Carlo simulation techniques. We investigated the sensibility to the choice of
different priors for the nonlinear effects (second random walk: RW2) and the
choice of the hyper-parameter values a and b. We noticed that results for this

application are not sensitive to the choice of the priors and hyper-parameter.
3. Results

The presentation of the empirical results starts with residual spatial effects of the
districts where the child live. It continues with results of nonparametric effects
of the mother’s age at child’s birth and child’s age. Finally results from vari-
ous logistic regressions are presented that identify particular socio-economic and
environmental characteristics as significantly associated with childhood morbid-
ity. The results are robust with respect to the prior specifications and emerge
from a unified model framework that enables thorough investigation into the
associations of childhood morbidity incidence and areal-level risk factors, ac-
counting for residual variation and spatial autocorrelation that likely arise from

unmeasured confounders.

When we attempted to fit the standard model (1) with constant fixed effects for
metrical covariates (child’s age and mother’s age at first birth of the child) and
the spatial location (districts in dummy), we found that there was not enough
information in the data to estimate the parameters X/, correctly (confidence
interval included zeros indicating no effects on the response variables). The

posterior mean estimates for each model demonstrates that the district-level area



factor does not adequately explain the short-range spatial structure. Various

models were tried, but these made no difference.

For both countries we estimated models where either a structured or an unstruc-
tured effect was included as well as a model where both effects were included.
Based on these results we found clear evidence for both countries of spatial
correlation among neighboring districts. Hence, a spatially correlated effect fs,
is included into the predictors of our final models. For the two countries, we
additionally include an unstructured effect fi,s: because there is evidence of

local extra variation in the highly urbanized areas of Malawi and Zambia.

We therefore considered including the spatial component f, st (dist)+ fsir(dist),
thereby increasing model complexity. With such models, it is assumed that the
random components at the contextual level (district) are mutually independent.
Even though, in practical, this assumption is not actually implied by these ap-
proaches, so correlated random residuals can also be specified (see Langford et
et al., 1999). However, the estimates of the presumed spatial correlated district
level random effects in fact showed strong evidence of spatial dependence. This
is indicated in Fig. 1, which plots the posterior mean estimates of the spatial
district effects. Though the spatial unstructured district effects for fever turns
out to be insignificant, both maps show a strong spatial variation. Since predic-
tion of spatial residual is our goals, the non-spatial model is clearly inadequate.
We therefore focus on model (2), to give the results that were obtained during

the fitting.

Figures 1 through 8 maps the estimates of the spatial effects (spatial residuals:
the levels correspond to ”high risk of morbidity (red coloured)” and ”low risk
(green coloured)”)) with the significance maps, showing ”probabilities maps”.
For a nominal level of 80% the levels correspond to ”high risk of morbidity
(black coloured)”, "nonsignificant (grey coloured)”, i.e. zero is within the credi-
ble interval around the estimate, and ”lower risk of mobidity (white coloured)”.
Figure 9 through 14 give the result of the non-linear effect of child’s age and

the mother’s age. Shown are the posterior means together with 80 % pointwise



credible intervals.

Table 1 through 7 shows the posterior mean and 80% credible interval for each
of the fixed effects parameters for categorical covariates in model (2). There
are sizeable fixed effects, which are highly significant (i.e. credible intervals are
either strictly positive or strictly negative). The Bayesian spatial effects (Figures
1 and 5) suggest reasonable variation in the prevalence of diarrheal morbidity
in Malawi and Zambia. The residuals posterior mean correspond to higher risk

districts (red colored) and low risk districts (green colored).
3.1 Diarrheal morbidity

The data suggest considerable spatial autocorrelation in the underlying posterior
means. The left panel of Figures 1 and 5 reveals high risk clusters mainly in the

central districts of Malawi and in the north-east of Zambia.

The result of the non-linear effect of child’s age (Figures 9 through 14) suggest
that there are continuous worsening of the child morbidity up to about 6 months
of age. This deterioration set in right after birth and continues, more or less

linearly, until 10 months and decreases thereafter.

We find the influence of the mother’s age (right panel of Figure 9) on diar-
rheal morbidity to be in the form of an inverse U-shape in Malawi, while in
Zambia (Figure 12) we have a U-shape. While the U or inverse U looks nearly
symmetric, the descending portion exhibits a much larger range in the credible
region. Children from younger (less than 20 years) and older (more than 35
years) mothers are at higher risk of diarrheal morbidity compared to children
from middle age group (20-35 years). Interpretation of results at the end of the
observation (wide credible interval) is particularly unreliable in regions where

there are few observations.

With regard to the fixed parameters, Table 2 shows that the prevalence of di-
arrhea in Malawi is lower among infants who are exclusively breastfed, whose
mothers are well educated with a father having up to primary education, a
long birth interval (24 months and more), a multiple birth and infants living in

urban areas. Lower parental education and male children are associated with



higher risk of diarrheal morbidity. In Zambia (Table 5), higher risk of diarrheal
morbidity is associated with lower and higher parental education (up to primary
education for both parents and secondary education and higher for maternal ed-
ucation), male children, and mother’s marital status (single mother). Children
from large size household are associated with lower risk of diarrheal morbidity.
Children from medium economic status households had lower risk of diarrheal
morbidity if they lived in rural areas than if they lived in urban areas. This fact
is only true for Zambian children. In the two countries, we didn’t found a sta-
tistically significant association between diarrheal morbidity and prematurity of
the child, vaccination status, the antenatal visit during pregnancy, child’s place
of delivery (whether hospital or home), the economic status of the household

and child’s size at birth.
3.2 Fever morbidity

The right panel of Figures 2 reveals a strong north-south gradient in the district
spatial effects in Malawi with a fairly sharp dividing line that runs through the
center (the capital city Lilongwe) of the country. Over and above the impact of
the fixed effects, there appear to be negative influences on fever morbidity in
the north that are spread and affect most of the districts there. The right panel
of Figures 2 reveals also lower risk of fever morbidity in the capital Lilogwe in
spite of being surrounded by some of the high risk districts. High risk clusters
of fever morbidity in Zambia (Figure 6) are mainly located in the southern and

north-east districts.

The result of the non-linear effect of child’s age in the two countries (Figures 10
and 13) suggest that there are continuous worsening of the child morbidity up

to about 10 months of age.

The right panel of figures 10 and 13 associate the influence of the mother’s
age on fever morbidity to be in the form of an inverse U shape in Malawi and
a U shape in Zambia. Children from younger (less than 20 years) and older
(more than 35 years) mothers are at higher risk of fever morbidity compared to

children from middle age group (20-35 years).



The fixed parameters show that the prevalence of fever in Malawi (Table 4)
is higher among infants from ”poor” maternal education (up to primary edu-
cation), vaccinated children and infants who are mixed feeding. Children born
in hospital, breastfed exclusively and have a father with secondary education
and higher are associated with lower risk of fever morbidity. In Zambia (Table
7), higher risk of fever morbidity is associated with lower and higher maternal
education (up to primary education and secondary education and higher), pre-
mature birth, mother’s marital status (single mothers) and low economic status
households. Children from medium size households are associated with lower
risk of fever morbidity. The data didn’t show, in the two countries, a statisti-
cally significant association between fever morbidity and child’s sex, family size,
child’s sex, child’s place of delivery, the antenatal visit during pregnancy, the

type of breastfeeding , child’s size at birth, and child’s place of residence.
3.3 Cough morbidity

There is a strong north-south (left panel of Figures 3) gradient in the district
spatial effects in Malawi with a fairly sharp dividing line that runs through the
capital (Lilongwe) of the country. There appear to be negative influences on
cough morbidity in the north that are spread and affect most of the districts

there.

The data suggest considerable spatial autocorrelation and local variation in the
underlying posterior means for cough morbidity in Malawi and Zambia. The
left panel of Figures 3 and 7 reveals high risk clusters mainly in the central and
northern districts of Malawi and in the north-east of Zambia. Both maps show
a strong spatial pattern. This becomes even more obvious with Figure 4 and 8
showing ”probabilities maps”. For a nominal level of 80% the levels correspond
to "high risk of mortality (black coloured)”, ”nonsignificant (grey coloured)”,
i.e. zero is within the credible interval around the estimate, and ”lower risk of

mortality (white coloured)”.

The result of the non-linear effect of child’s age (Figures 11 and 14) suggest that

there are continuous worsening of the cough morbidity up to about 6 months of
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age and a decrease thereafter. We find the influence of the mother’s age (right
panel of Figure 11 and 14 ) on cough morbidity to be in the form of an inverse
U shape in Malawi and a U shape in Zambia. Children from younger (less than
20 years) and older (more than 35 years) mothers are at higher risk of diarrheal

morbidity compared to children from middle age group (20-35 years).

The fixed parameters (Table 3) show that the prevalence of cough in Malawi
is higher among children from low economic status households, infants who
are mixed feeding and infants with poor maternal education. Children who are
breastfed breast milk exclusively, with higher parental education and a large
family size are associated with lower risk of diarrheal morbidity. For Zambia
(Table 7), higher risk of cough morbidity is associated with lower maternal
education (up to primary education). Children from medium size household
(between 5 and 10 households members), have a long birth interval, were born
with average size are associated with lower risk of cough morbidity. Children
from medium economic status households had lower risk of diarrheal morbidity
if they lived in rural areas than if they lived in urban areas. This fact is only

true for Zambian children.

In the two countries, we didn’t found a statistically significant association be-
tween cough morbidity and child’s sex, vaccination status, child’s place of de-

livery, mother’s marital status and child’s place of residence.
4. Discussion

To gain an understanding of the geographic variation or patterns based on
the observed morbidity prevalence, we begin our analysis by first fitting the
Bayesian hierarchical model without the inclusion of spatial (district) and non-
linear metrical (mother’s and child’s age) covariates. The Bayesian estimation
of this model alone is impractical given the fact that we have to consider 31
dummies for the 32 districts in Malawi and 53 dummies for the 54 districts in
Zambia, from which the reduction in variation in childhood morbidity can be
readily assessed. We note that the issues of particular interest in this study,

and perhaps in health services research of similar kinds, are whether there is a
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significant geographic variation in childhood morbidity; if the answer is yes, can

such variation be explained by potential risk factors?
4.1 Spatial residual

Sub-Saharan Africa is geographically, demographically, socially, and culturally
heterogeneous, and the extent and spread of child morbidity have accordingly
been heterogeneous as well. Obviously this study has shown a sizeable district-
specific geographical variation in the level of child morbidity in Malawi and

Zambia.

Over and above the impact of the fixed effects in Malawi (Figure 1), there appear
to be negative influences on child morbidity in the central districts that are
spread and affect most of the districts there. The central districts are at a lower
altitude than other parts of the country. It is likely that climatic factors and
associated diseases are responsible for this pronounced district pattern. Food
insecurity associated with drought and flooding in the shire valley, which is a
result of hazardous effect of climate variation are among possible explanation for
these negative effects. Furthermore the central districts are among high density
population areas which affect the child’s physical environment, which in turn

influence exposure to disease.

At the district level, for Zambia, Figure 4, it appears that children living in
provincial capital (Lusaka and Kabwe), Solwezi, Milenge, Chilengi, Kasama,
Lundazi or Luangwa are significantly better-off than children in the rural areas.
The negative spatial effects on child morbidity in Eastern districts (left panel of
Figure 4) correspond to districts that are among density populated areas in the
province, therefore their share of disease spread may be one of the major factor

of this negative impact on child morbidity.

From the analysis, it also appears that living in the capital cities Lilongwe and
Lusaka is associated with significantly better fever morbidity in Malawi and bet-
ter diarrhea, fever and cough morbidity for Zambia despite being surrounded by
areas with negative district effects on childhood morbidity. Living in the capital

must thus provide access to mosquitos nets and health care that is superior in
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ways that have not been captured adequately in the fixed effects.

Figure 4- show the structured and the unstructured random effects of the three
ailments for Zambia. The structured effects show a sizeable difference between
significantly worse undernutrition in the Northern parts of the country (in par-
ticular the districts in Luapula and Northern province), and significantly better
nutrition in the Central and South-Western parts. These regional patterns are
similar, but not identical to analyses of poverty and deprivation undertaken by
the World Bank (World Bank, 1995). In terms of income poverty, the World
Bank found poverty to be lowest in the Central parts of the country. In ad-
dition, poverty was also much lower along the main trunk road and railroad
lines even outside the central part of the country. In terms of deprivation (based
on a mean score of various service items), the World Bank also found Luapula
province among the worst off, while it surprisingly included the Central province
and the Northwestern Province among the worst-off regions. While we also find
Luapula province to be among the worst off in the country, our analysis shows a
clearer geographic pattern with the North-East being worst off and the Central
and South-Western districts being best off.

The unstructured random effects are mostly not significant. But they neverthe-
less point in interesting directions. In particular, they suggest a fair amount of
variation over and above the structured effects. Particularly noteworthy is the
fact that for some urban centers, the unstructured effects point to lower child
morbidity, once the fixed effects (which include a positive effect of urban areas)
and the structured effects are controlled for. This is particularly noteworthy for
Kitwe in the Copperbelt, but also visible for Lusaka and Kabwe in the Central
Part of the country. In contrast to Malawi, it thus appears that some urban
agglomerations are associated with better child morbidity. While major health
interventions, an overhaul of the economic environment or environmental factors
(drought shocks: indeed, drought was reported in the southern part of Malawi
during the 1992 DHS survey) may cause such differentials from one district to

another, differences in food prices may also be a possible reason. To explore dis-
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tricts differences further we postulate also that districts differences in total cost
of living may be indicative of the observed districts differences. Food prices in
the two countries may fluctuate considerably from one district to another due to
erratic rainfall patterns. It is also, in this respect, of immediate policy relevance

to examine the direct effect of relative food prices on childhood morbidity.

This analysis has provided an explanation of the residual spatial variation in the
data and in particular it has shown that the variation is spatially structured.
If this is true, it implies that adjusted diarrhea, cough and fever prevalence
are similar among neighboring districts, then the possibly explanation must
be partly environmental. If not, a more likely explanation is that the residual

spatial variation is induced by variation in unmeasured districts-specific factors.
4.2 Nonlinear effects

In Malawi and Zambia, childhood morbidity is associated with child’s age and
the mother’s age at birth of the child for the three ailments. While the effect
of the variable "mother’s age” is almost linear for diarrheal morbidity in both
countries, its effect and that of the variable ”child’s age” are clearly nonlin-
ear. The curve has a bathtub shape, and indicates that not only children from
younger mothers but also children from older mothers are at higher risk, com-
pared to ”middle” age mothers (20-35 years old). As suggested by the morbidity
literature, we are able to discern the continuous worsening of the child morbid-
ity up to about 6 months of age. This deterioration set in right after birth and
continues, more or less linearly, until 10 months. Such an immediate deterio-
ration in child morbidity is not quite as expected as the literature typically
suggests that the worsening is associated with weaning at around 4-6 months.
One reason for this unexpected finding could be that, according to the surveys,
most parents give their children liquids other than breastmilk shortly after birth
which might contribute to infections. We find the influence of the mother’s age
on child’s morbidity to be in the form of an inverse U shape or U shape for
the three ailments. While the inverse U or U looks nearly symmetric, the de-

scending portion exhibits a much larger range in the credible region. Children
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from younger (less than 20 years) and older (more than 35 years) mothers are
at higher risk of being ill compared to children from middle age group (20-35
years). The relationship varies across socio-cultural settings depending on levels
and age patterns of fertility. Part of the negative association of morbidity risk of
children between a younger mother’s age and child survival may be attributed
to the tendency for young mothers to be socially and economically disadvan-
taged (World Bank, 1995) and the fact that younger mothers do not often use

obstetric and antenatal services much as older mothers (Magadi et.al., 2000).
4.3 Fixed effects

After controlling for the spatial dependance in the data, the fixed effects show
the importance of mother’s education, household economic status, residence,
the birth interval, the antenatal visit during pregnancy, the marital status of
the mother, and child’s sex on child morbidity. The finding are generally as
expected and consistent with the literature. These findings point to the potential
for child morbidity reduction that could result from successful efforts to improve
and maintain adequate child physical environment in the two countries. We find
that the risk of child morbidity through breastfeeding appears to be greatest in
the first few months of life and is lower among infants who are fed breast milk
exclusively than among those who are mixed feeding in Malawi. But this is not
the case in Zambia, the data did not show any protective effects of exclusive

breastfeeding for the three ailments.
4.4 Interaction terms

We tested several interactions. First, we ran separate models for males and
females (results not reported here) but we found them to be very similar. Second,
we interact the effect of economic status and the rural or urban location to
account for the difference in the asset index as a measure of the household
economic status in the two locations. This interaction only had a significant
effect in Zambia. Bearing in mind that one limitation of this study is that
measuring wealth (with the principal component analysis used) is problematic.

Many of the household wealth indices use assets that are more likely to be found
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in urban areas than in rural areas. Thus, most of the rural households will be
in the lowest wealth category even if they have other indicators of wealth (e.g.
livestock or form machinery). The consequence of this misclassification would
be to lower the morbidity risks of rural households. Another limitation with
household wealth indices derived from DHS is that they are based on current
status data so that they might not capture the true level of household wealth
during the infancy of children born several years before the survey. However,
since these analyses are restricted to births within five years of the survey, this

bias will not be substantial.

One issue of this study worth mentioning is that one cannot assume that the
clusters selected in each district are fully representative of the districts in which
they are located, as the surveys only attempted to generate a fully represen-
tative sample at the provincial level. Consequently, the spatial analysis will be
affected by some random fluctuations. Some of this random variation can be
reduced through the structured spatial effects as it includes neighboring obser-
vations in the analysis. It should, however, be pointed out that such a spatial
analysis should preferably be applied to census data, the most important official
demographic data source in most developing countries, where the precision of
the spatial analysis would be much higher. Unfortunately, most censuses do not
collect data on undernutrition and often the full dataset is not available for such

analyses.

These findings are not only relevant for analytical purposes but have consid-
erable policy significance. In particular, the age effect points to considerable
morbidity problems immediately after birth, possibly related to the use of un-
clean liquids and the type of breastfeeding. This is a subject that should be
investigated further. Second, the nonlinear influence of mother’s age indicates
that not only younger parents, but also older parents might also have negative
effects on the morbidity status of children. Third, the districts influences on
child morbidity also are of high policy significance. In particular, they suggest

that in Zambia children living provincial capital are much less affected by mor-
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bidity, even if they suffer similar risk factors (as captured by the fixed effects).
The same is, however, not true in Malawi, where some urban agglomerations
are associated with higher risk of child morbidity. Also, more emphasis must be
placed upon the role of remoteness as well as climatic and geographic factors
on undernutrition. The North-South divide in Malawi and the regional effects

in Zambia bear out the importance of such considerations.
Conclusion

This analysis suggests that if interest focuses on the regression parameters (3
there is little to be gained from an elaborate spatial modelling exercise for
these data. However, in many spatial epidemiology applications including this,
the practical interest extends to constructing predictive maps for the risk of
diarrhea, cough and fever throughout the country, as an aid to the targeting of
scarce public health resources. Our results suggests that this requires smooth
spatial interpolation of estimated districts effects in addition to smooth point
estimates at any given location (district). A failure to take into account the
posterior uncertainty in the spatial location (district) would overestimate the
precision of the diarrhea, fever and cough prevalence prediction in unsampled
districts. The general interpretation of the inclusion of the spatial effect is that
the spatial effect fopar = funstr(dist)+ fser(dist) represents the cumulative effect
of unidentified covariates which, if they had been available, would have been
included in the estimation. These possible unidentified additional covariates

could be environmental, social and even cultural.

Maps could be used for targeting development efforts at a glance, or for exploring
relationships between welfare indicators and others variables.The visual nature
of the maps may highlight unexpected relationships that would be overlooked

in a standard regression analysis.
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Table 1 Factors analyzed in child morbidity study in Malawi and Zambia
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Factor Malawi (%)  Zambia (%) coding

Individual characteristics

Sex of child: Male 50.7 50.1 1: male

Female 49.3 49.9 -1 reference category
Preceding birth interval: Less than 24 month 19.38 17.8 -1 reference category
Greater than 24 80.62 82.2 1

Type of breastfeeding: Exclusive breastfeeding 5.65 7.22 category 1

Mixed feeding 57.2 52.04 category 2

No breastfeeding 37.15 40.74 -1 reference category
Premature child: Yes 4 4.80 1

No 96 95.20 -1 reference category
Receive vaccination: Yes 77.83 72.82 1

No 22.17 27.18 -1 reference category
Child a twin: Singleton birth 95.93 96.05 -1 reference category
Multiple birth 4.07 3.95 1

Child’s size at birth: Small size 17.73 11.84 -1 reference category
Average size 61.95 67.96 1

Large size 20.33 20.20 2

Family characteristics

Mother’s age: Less than 21 29.79 33.78 -1 reference category
22-35 56.93 55.93 category 1

Greater than 35 13.28 10.29 category 2
Mother’s Educational attainment:

No education and incomplete primary educ. 84.45 48.21 1

Up to primary educ. 10.14 32.83 2

Secondary educ. and higher 5.41 18.96 -1 reference category
Partner’s Educational attainment:

No education and incomplete primary educ. 60.08 28.11 1

Up to primary educ. 22.95 30.63 2

Secondary educ. and higher 16.96 41.26 -1 reference category
Marital status: Single mothers 11.48 15.24 1

Married 88.52 84.76 -1 reference category
Antenatal visit: Yes 93.59 93.24 1

No 6.41 6.76 -1 reference category
Asset index: Low-income household 38.93 36.75 1

Middle-income household 40.02 40.45 2

high-income household 20.4% 21.66 -1 reference category
Parity: Small family (less than 5 members) 56.06 58.77 -1 reference category
Medium size (between 5 and 10 members) 40.98 37.83 1

Large size (more than 10 members) 2.96 3.40 2

Community characteristics

Place of residence: Urban 25.5 42.7 1

Rural 74.5 57.3 -1 reference category
Household size: Small size (less than 6 members) | 46.72 33.45 -1 reference category
Medium size (between 5 and 9 members) 43.16 42.74 1

Large size (more than 9 members) 10.12 23.81 2

Child’s place of delivery: Hospital 62.51 49.56 1

Home and others 21 37.49 50.44 -1 reference category
District: 32 62 spatial covariate
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Figure 1 Structured (left) and unstructured (right) spatial effects for diarrhea in
Malawi (Model M2).
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Figure 2 Structured (left) and unstructured (right) spatial effects for fever in Malaws:
(Model M2).
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Figure 8 Structured (left) and unstructured (right) spatial effects for cough in Malawi
(Model M2).
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Figure 4 Maps of 80% posterior probabilities for the structured (left) and

unstructured (right) spatial effects for cough in Malawi (Models M2).
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Figure 5 Structured (left) and unstructured (right) spatial effects for diarrhea in

g I (Model M2). é ﬁ
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Figure 6 Structured (left) and unstructured (right) spatial effects for fever in Zambia
(Model M2).
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Figure 7 Structured (left) and upstructured (right) spatial effects for cough in Zambia

Figure 8 Maps of 80% posterior probabilities for the structured (left) and

unstructured (right) spatial effects for cough in Zambia (Models M2).
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Table 2 Posterior estimates of the fixed effect parameters for diarrhea in Malawi

Variable mean  std. error  10% quantile  90% quantile
Constant -1.24 0.16 -1.24 -1.05
Maternal education: Up to primary educ. 0.23 0.07 0.14 0.31
Secondary educ. and higher -0.17 0.07 -0.27 -0.08
Patner education: Up to primary educ. -0.08 0.04 -0.14 -0.02
Secondary educ. and higher -0.06 0.04 -0.11 0.001
Sex of child: Male 0.06 0.03 0.02 0.09
Premature birth -0.06 0.10 -0.18 0.07
Child received vaccination 0.08 0.10 -0.04 0.21
Marital status: Single mothers -0.001 0.05 -0.06 0.06
Children from ”low-income” hous. 0.04 0.07 -0.05 0.13
Children from ”medium-income” hous. 0.004 0.05 -0.06 0.06
Medium size household -0.002 0.04 -0.05 0.05
Large size household 0.01 0.06 -0.06 0.08
Parity (between 5 and 9 members) -0.07 0.06 -0.15 0.004
parity (more than 9 members) 0.13 0.11 -0.005 0.28
Child’s size at birth: small 0.03 0.05 -0.04 0.09
Child’s size at birth: average 0.004 0.04 -0.04 0.05
Long birth interval -0.08 0.03 -0.13 -0.04
Antenatal visit during pregnancy -0.02 0.11 -0.15 0.12
Child’s place of delivery (hospital) -0.01 0.03 -0.04 0.03
Multiple birth -0.13 0.08 -0.24 -0.02
Exclusive breastfeeding -0.13 0.10 -0.27 -0.005
Mixed feeding 0.06 0.06 -0.01 0.13
Child’s place of residence:Urban -0.07 0.05 -0.13 -0.01
Interaction terms:

Low-income hous.* rural areas 0.03 0.07 -0.06 0.12
Medium-income hous. rural areas -0.01 0.05 -0.08 0.05
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Table 3 Posterior estimates of the fixed effect parameters for fever in Malawi

Variable mean  std. error  10% quantile  90% quantile
Constant -0.36 0.14 -0.53 -0.18
Maternal education: Up to primary educ. 0.22 0.06 0.14 0.29
Secondary educ. and higher -0.03 0.06 -0.11 0.05
Partner education: Up to primary educ. -0.03 0.04 -0.08 0.02
Secondary educ. and higher -0.07 0.04 -0.12 -0.02
Sex of child: Male -0.005 0.02 -0.03 0.02
Premature birth 0.08 0.08 -0.02 0.18
Child received vaccination 0.27 0.08 0.17 0.38
Marital status: Single mothers 0.03 0.04 -0.02 0.09
Children from ”low-income” hous. 0.04 0.06 -0.04 0.12
Children from ”medium-income” hous. -0.01 0.04 -0.07 0.04
Medium size household -0.01 0.04 -0.06 0.04
Large size household 0.02 0.05 -0.05 0.09
Parity (between 5 and 9 members) 0.04 0.05 -0.03 0.10
parity (more than 9 members) -0.11 0.10 -0.24 0.03
Child’s size at birth: small -0.04 0.04 -0.10 0.02
Child’s size at birth: average -0.02 0.03 -0.06 0.03
Long birth interval -0.02 0.03 -0.05 0.02
Antenatal visit during pregnancy -0.11 0.10 -0.23 0.01
Child’s place of delivery (hospital) -0.05 0.03 -0.08 -0.01
Multiple birth 0.07 0.07 -0.02 0.16
Exclusive breastfeeding -0.23 0.09 -0.35 -0.12
Mixed feeding 0.11 0.05 0.05 0.17
Child’s place of residence:Urban -0.04 0.04 -0.09 0.005
Interaction terms:

Low-income hous.* rural areas -0.03 0.06 -0.10 0.05
Medium-income hous. rural areas 0.02 0.04 -0.04 0.07
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Table 4 Posterior estimates of the fixed effect parameters for cough in Malawi

Variable mean  std. error  10% quantile  90% quantile
Constant -0.45 0.13 -0.62 -0.28
Maternal education: Up to primary educ. 0.15 0.06 0.08 0.23
Secondary educ. and higher -0.01 0.06 -0.09 0.07
Partner education: Up to primary educ. -0.10 0.04 -0.15 -0.05
Secondary educ. and higher -0.06 0.04 -0.11 -0.01
Sex of child: Male -0.003 0.02 -0.03 0.03
Premature birth 0.07 0.08 -0.03 0.17
Child received vaccination 0.09 0.08 -0.01 0.20
Marital status: Single mothers 0.03 0.04 -0.03 0.08
Children from ”low-income” hous. 0.08 0.06 0.01 0.16
Children from ”medium-income” hous. 0.05 0.04 -0.004 0.11
Medium size household 0.03 0.04 -0.01 0.07
Large size household -0.003 0.05 -0.07 0.06
Parity (between 5 and 9 members) 0.12 0.06 0.05 0.20
parity (more than 9 members) -0.23 0.10 -0.37 -0.09
Child’s size at birth: small -0.003 0.04 -0.06 0.05
Child’s size at birth: average -0.02 0.03 -0.06 0.02
Long birth interval 0.03 0.03 -0.01 0.06
Antenatal visit during pregnancy -0.10 0.10 -0.22 0.03
Child’s place of delivery (hospital) -0.02 0.03 -0.06 0.01
Multiple birth -0.01 0.07 -0.10 0.08
Exclusive breastfeeding -0.36 0.08 -0.47 -0.25
Mixed feeding 0.15 0.05 0.09 0.22
Child’s place of residence:Urban 0.001 0.04 -0.05 0.05
Interaction terms:

Low-income hous.* rural areas -0.03 0.06 -0.11 0.05
Medium-income hous. rural areas -0.01 0.04 -0.06 0.05
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Table 5 Posterior estimates of the fixed effect parameters for diarrhea in Zambia

Variable mean  std. error  10% quantile  90% quantile
Constant -0.85 0.11 -0.99 -0.71
Maternal education: Up to primary educ. 0.09 0.04 0.04 0.13
Secondary educ. and higher 0.08 0.03 0.03 0.12
Patner education: Up to primary educ. 0.06 0.04 0.01 0.10
Secondary educ. and higher -0.02 0.03 -0.06 0.02
Sex of child: Male 0.06 0.02 0.03 0.08
Premature birth -0.06 0.07 -0.15 0.02
Child received vaccination -0.05 0.06 -0.13 0.03
Marital status: Single mothers 0.07 0.04 0.02 0.12
Children from ”low-income” hous. 0.06 0.09 -0.05 0.16
Children from ”medium-income” hous. 0.06 0.06 -0.02 0.13
Medium size household 0.01 0.03 -0.02 0.05
Large size household -0.08 0.04 -0.12 -0.03
Parity (between 5 and 9 members) -0.06 0.05 -0.12 0.01
parity (more than 9 members) 0.01 0.09 -0.10 0.13
Child’s size at birth: small 0.04 0.05 -0.02 0.11
Child’s size at birth: average -0.02 0.03 -0.06 0.02
Long birth interval -0.02 0.03 -0.06 0.02
Antenatal visit during pregnancy 0.04 0.09 -0.07 0.15
Child’s place of delivery (hospital) 0.001 0.03 -0.03 0.04
Multiple birth 0.01 0.06 -0.06 0.09
Exclusive breastfeeding -0.04 0.07 -0.14 0.05
Mixed feeding -0.01 0.04 -0.06 0.04
Child’s place of residence:Urban 0.005 0.04 -0.05 0.06
Interaction terms:

Low-income hous.* rural areas -0.05 0.10 -0.18 0.08
Medium-income hous. rural areas -0.13 0.08 -0.24 -0.03
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Table 6 Posterior estimates of the fixed effect parameters for fever in Zambia

Variable mean  std. error  10% quantile  90% quantile
Constant 0.062 0.10 -0.07 0.19
Maternal education: Up to primary educ. 0.13 0.03 0.08 0.17
Secondary educ. and higher 0.05 0.03 0.01 0.09
Patner education: Up to primary educ. -0.04 0.03 -0.08 0.01
Secondary educ. and higher 0.02 0.03 -0.01 0.06
Sex of child: Male 0.01 0.02 -0.02 0.03
Premature birth 0.13 0.06 0.05 0.21
Child received vaccination 0.03 0.06 -0.04 0.11
Marital status: Single mothers 0.06 0.03 0.02 0.10
Children from ”low-income” hous. 0.12 0.08 0.01 0.22
Children from ”medium-income” hous. -0.04 0.05 -0.10 0.02
Medium size household -0.07 0.03 -0.10 -0.03
Large size household -0.003 0.03 -0.04 0.04
Parity (between 5 and 9 members) -0.004 0.04 -0.06 0.05
parity (more than 9 members) -0.01 0.08 -0.11 0.09
Child’s size at birth: small -0.04 0.05 -0.10 0.02
Child’s size at birth: average -0.02 0.03 -0.06 0.02
Long birth interval -0.03 0.02 -0.06 0.004
Antenatal visit during pregnancy 0.01 0.09 -0.10 0.12
Child’s place of delivery (hospital) -0.02 0.02 -0.05 0.01
Multiple birth -0.03 0.06 -0.10 0.04
Exclusive breastfeeding -0.04 0.07 -0.12 0.05
Mixed feeding 0.02 0.04 -0.02 0.07
Child’s place of residence:Urban -0.05 0.04 -0.10 0.0001
Interaction terms:

Low-income hous.* rural areas -0.07 0.10 -0.19 0.05
Medium-income hous. rural areas 0.09 0.07 -0.005 0.18
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Table 7 Posterior estimates of the fixed effect parameters for cough in Zambia

Variable mean  std. error  10% quantile  90% quantile
Constant 0.01 0.10 -0.12 0.14
Maternal education: Up to primary educ. 0.05 0.03 0.01 0.09
Secondary educ. and higher 0.02 0.03 -0.01 0.06
Partner education: Up to primary educ. -0.01 0.03 -0.05 0.04
Secondary educ. and higher 0.02 0.03 -0.02 0.06
Sex of child: Male -0.02 0.02 -0.04 0.005
Premature birth 0.06 0.06 -0.01 0.14
Child received vaccination -0.01 0.06 -0.08 0.07
Marital status: Single mothers -0.003 0.03 -0.04 0.04
Children from ”low-income” hous. -0.09 0.08 -0.20 0.02
Children from ”medium-income” hous. 0.05 0.05 -0.02 0.12
Medium size household -0.06 0.03 -0.09 -0.02
Large size household -0.02 0.03 -0.06 0.03
Parity (between 5 and 9 members) 0.0004 0.04 -0.06 0.06
parity (more than 9 members) -0.005 0.08 -0.11 0.09
Child’s size at birth: small 0.02 0.05 -0.04 0.08
Child’s size at birth: average -0.04 0.03 -0.08 -0.002
Long birth interval -0.04 0.02 -0.07 -0.01
Antenatal visit during pregnancy 0.10 0.08 -0.01 0.20
Child’s place of delivery (hospital) -0.02 0.02 -0.05 0.01
Multiple birth 0.01 0.05 -0.06 0.08
Exclusive breastfeeding -0.02 0.07 -0.11 0.06
Mixed feeding 0.01 0.04 -0.04 0.06
Child’s place of residence:Urban -0.02 0.04 -0.07 0.03
Interaction terms:

Low-income hous.* rural areas 0.09 0.10 -0.03 0.23
Medium-income hous. rural areas -0.15 0.07 -0.24 -0.05

Table 8 Summary of the DIC for models M1 and M2 (Malawi: left and Zambia: right)

Model Deviance pD DIC Deviance pD DIC
M1 (Diarrhea) 904.962  20.10 925.96 1643.28  27.11 1670.39
M2(Diarrhea) 868.32  46.45 914.77 520.95 57.94 578.90
M1 (Cough) 1402.19  21.36  1423.55 2248.63  26.97 2275.6
M2(Cough) 1359.88  53.44 1413.3 753.28  67.17 820.45
M1 (Fever) 1341.37  21.27  1362.64 2166  26.26  2192.27
M2(Fever) 1305.35  50.47  1355.83 721.46  67.69 789.15
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