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 A Population With Continually Declining Mortality 
 
 
 ABSTRACT 
 

In recent years, many countries have experienced sustained declines in death rates.  Here 

we present a new dynamic population model that provides a framework for analyzing continuing 

mortality declines.  Every year there is one birth in the model.  Mortality increases exponentially 

over age at rate b while decreasing exponentially over time at rate c.  The model population is 

strikingly linear in its behavior over time, with many measures changing at a rate that closely 

approximates a simple function of b and c.  The size of the population is virtually the same as the 

average age at death, and both increase annually by c/b.  Period life expectancy at birth also 

increases linearly by c/b, while the average age of the population increases linearly by c/(2b).   

Preserving a constant ratio of persons in the economically active ages to those in the retirement 

ages implies an increase in the “normal” age of retirement of about 6.8c years per year.  The 

interpretability of parameters b and c, the ability to accommodate varying rates of decline, and 

the linear nature of demographic changes enhance the model’s potential for analyzing steadily 

increasing longevity. 
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 A Population With Continually Declining Mortality 
 
 

People today are living longer than ever before, and there is no sign that mortality 

reductions are coming to an end.  White (2002) examined life expectancies in 21 high income 

countries from 1955 to 1996, and found a clear upward, linear trend.  Kannisto, Lauritsen, 

Thatcher, and Vaupel (1994) found continuing improvements in mortality at the highest ages in 

27 low mortality countries, with no reduction in the rate of decline from the 1960s through the 

1980s.  The number of centenarians is increasing markedly.  Robine and Saito (2003) saw a 

strong and continuing acceleration in the emergence of the centenarian population in Japan, 

currently the nation with the world’s highest life expectancy.  Oeppen and Vaupel (2002) 

followed the time trend of longevity in the country with the highest life expectancy during each 

time period, and found that over the past 160 years the maximum female life expectancy rose at 

a steady pace: nearly 3 months per year.  There was no sign of slowing in recent years as that 

maximum expectation of life at birth approached 85 years.   

Those steady improvements in longevity affect more than individual survival because 

they impact population age structure and patterns of intergenerational transfer.  In a number of 

countries, including the United States, the costs of medical care and retirement benefits have 

become matters of national concern.  The relative claim of older versus younger persons to 

societal support continues to be a contested area of social policy (cf. Preston 1984). 

Established demographic techniques, such as population projections and the life table, 

can accurately describe the implications of given schedules of age-specific death rates.  

However, analyses of the present situation of sustained mortality decline can greatly benefit from 
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the development of new techniques (e.g. Lee and Carter 1992).  Here we focus on closed form 

dynamic mortality models.  After examining past approaches, we propose a new dynamic model 

of continually declining mortality and explore its demographic implications. 

 PREVIOUS APPROACHES TO DYNAMIC MORTALITY  

A life table shows the number of persons from an initial birth cohort who survive to each 

age under a given schedule of age-specific mortality rates.  If rates for a given year are used, a 

period life table is produced.  If the rates follow an actual birth cohort, a cohort life table results. 

 In either case, the stationary population of the life table describes the number and composition 

of the population implied by those rates (and the initial number in the life table cohort).  The 

period and cohort manifestations of the life table reflect the two customary perspectives used in 

demography. 

When rates are changing, there are useful model populations that do not conform to either 

the period or cohort perspectives.  There is a need for a third perspective, first identified by 

Brouard (1986) and since discussed by Guillot (2003a).  Consider a model population that has 

had one birth each year for many years, but has had a history of changing mortality.  During year 

t, the number of persons in that population at age x is the number of survivors of the cohort born 

x years earlier, survivors who have experienced, at each age, the mortality rates that prevailed at 

an earlier time.  The time t population of the model is not a “period” population in the life table 

sense because it is not determined by the rates prevailing in any one period.  Neither is it a 

cohort population.  It is rather what may be termed a “wedge-period” population, since the set of 

rates that determine the model’s survivors at time t form a triangular, wedge-like pattern in a 

cross-tabulation (or Lexis diagram) of the population’s mortality by age and time.   
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Brouard (1986) termed the number of persons in such a wedge-period population the 

“duree de vie moyenne actuelle”.  Guillot (2003a) translated that as the “cross-sectional average 

length of life”, and denoted the model population size at time t by CAL(t).  From its definition, 

CAL(t) is the sum of cohort proportions surviving, where the sum is taken over all of the cohorts 

present at time t.  When mortality has been improving, CAL(t) is always less than the time t 

expectation of life at birth, because a higher proportion of persons survive to each age under the 

death rates prevailing at time t than under the rates experienced in the past.  As a measure of 

population size, CAL shows the impact of past and current mortality on population growth 

(Guillot 2003a).  Steadily improving mortality implies a future population increase, i.e. a 

mortality generated population momentum.  Guillot (2003a) showed that if mortality becomes 

constant at its time t level, the model population will grow in size by the factor e0 (t)/CAL(t), 

where e0 (t) is the time t life expectancy. 

Bongaarts and Feeney (2002), in a significant advance in modeling changing mortality, 

saw CAL as a tempo-adjusted measure of mortality.  While that interpretation has been criticized 

by Vaupel (2002) and Guillot (2003ab), we focus here on the underlying Bongaarts-Feeney 

dynamic mortality model.  They assumed that at every time the force of mortality had a 

Gompertz pattern, i.e. that 

µ(x,t) = µ(0,t) ebx        (1) 

where µ(x,t) is the force of mortality (i.e. the intensity or instantaneous risk of death) at age x 

and time t and b is the fixed Gompertz parameter.  Bongaarts and Feeney (2002) assumed that 

the shape of the force of mortality curve did not change, but that it could shift over time by 

sliding along the x-axis.  In particular, they argued that if µ(x,t) was multiplied at all ages by a 
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factor k<1, then the new mortality function is the old mortality function shifted to the right.   

Under that pattern of mortality change, Bongaarts and Feeney (2002) found that N(x,t), 

the number of persons in the wedge-period model population at age x and time t, is given by 

N(x,t) = N(x-F(t), 0)    for x≥F(t)   (2) 

and  N(x,t) = 1     for x<F(t)   (3) 

where the model population is scaled to have one birth each year, and F(t) is the amount the N 

function has shifted to the right at time t.  Thus population age structure N also keeps a constant 

shape over time, although shifting according to translation function F.  The total number of 

persons in the population at time t, i.e. Σi N(i,t), is CAL(t), and the translation function can be 

written 

F(t) = CAL(t) - CAL(0)       (4) 

Since CAL(0) is a constant, equation (4) implies 

dF(t)/dt = dCAL(t)/dt        (5) 

After deriving those relationships, Bongaarts and Feeney (2002) found that 

CAL(t) = Ad (t)        (6) 

where Ad (t) is the time t model population average age at death, and that 

CAL(t) = e0 (t) + (1/b) ln{ 1 - dCAL(t)/dt }     (7) 

From equation (7), CAL(t) can be found from the life expectancy function and Gompertz 

constant b using standard numerical methods, with N(x,t) following from equations (3) and (4) 

and N(x,0).  Bongaarts and Feeney (2002) did not provide an explicit nonrecursive solution for 

either CAL(t) or N(x,t). 

The Bongaarts-Feeney mortality model allows for any pattern of mortality shifts over 
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time.  The Gompertz pattern is quite reasonable, though the model’s bifurcated definition of µ is 

analytically awkward.  The model preserves a constant age structure, though it is only constant 

over a shifting threshold age F(t).1  Preserving the initial population composition in that manner 

is less than optimal because it allows the choice of initial time point to influence model values.  

Consider a population with cyclically fluctuating mortality.  If the initial time point is when 

mortality is at its maximum, F(t)≥0 for all t.  For x and t > 0, there are numerous ages and times 

where the size of the population is 1 and µ(x,t)=0.  In contrast, if t=0 when mortality is at its 

minimum, then F(t)≤0.  For x and t > 0, it follows that µ(x,t) is always greater than 0 and that the 

size of the population is always less than 1. 

 MODELING CONTINUALLY DECLINING MORTALITY 

Specifying a Model of Continuous Mortality Decline 

We seek to provide a framework for analyzing sustained mortality decline.  While our 

model roughly approximates behavior in a number of developed countries during the past several 

decades, our intent is not to predict future mortality trends or estimate relationships in actual 

populations.  Instead, our goal is to provide a context in which such relationships can be 

analyzed, and to identify some structural consequences that follow from a constant birth 

sequence and falling mortality. 

The Gompertz formulation, where the force of mortality increases exponentially with 

age, is the classic model of mortality.  It is not appropriate at younger ages where death rates are 

declining or where accidental mortality is high, and there is mounting evidence that it overstates 

death rates at the highest ages.  Nonetheless, the exponential curve generally fits adult mortality 

quite well, and no alternative provides such a simple, analytically tractable pattern (Carnes, 
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Olshansky, and Grahn 1996; Wilmoth 1997).   

For our model of continuously declining mortality, we specify a Gompertz-like force of 

mortality that at age x and time t is 

µ(x,t) = eA+bx-ct        (8) 

Parameter A reflects the value of µ(0,0); parameter b is the fixed rate of increase in mortality 

over age; and parameter c is the constant rate of mortality decrease (at all ages) over time.   

In the period life table for year t, the probability of surviving from birth to age x, pLT(x,t), 

is given by  

                                        x  
pLT(x,t) = exp[ - ∫ µ(a,t) da ] 

                                       0 
 

 = exp[ eA-ct (1 - ebx ) / b]       (9) 
 
The time t period life expectancy is then 
                         ∞ 

e0 (t) =  ∫ pLT(x,t) dx          (10) 
                         0 
From a cohort perspective, the probability of surviving to attain age x at time t is given by 
 
                                     x  

p(x,t) = exp[ - ∫ µ(a, t-x+a) da ] 
                                    0 
 

 = exp[ -eA-ct {ebx - ecx } /(b-c)]      (11) 

when b≠c.  With one birth occurring in the model population each year, p(x,t) provides the 

number in the wedge-period population at age x and time t.  The total size of the time t 

population is 

                           ∞ 
CAL(t) = ∫ p(x,t) dx         (12) 

                            0 
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In short, our model population, closed to migration, has one birth each year, p(x,t) 

persons age x at time t, and an underlying force of mortality function exp[A+bx-ct].  The model 

size and age composition emerge as a consequence of the constant birth sequence and the 

absence of “feedbacks” between fertility and mortality. 

Relationships in the Continuously Declining Mortality Model 

Changing Life Expectancy.  To examine mortality dynamics, let us begin by considering 

how period life expectancy increases over time.  Differentiating e0 (t) using equations (9) and 

(10), we find 

de0 (t)/dt = (c/b) [ 1 - µ(0,t) e0 (t) ]       (13) 

With low mortality characterizing our model population, µ(0,0) is on the order of .0000125.  

Thus if e0 (0) equals 80 years, the second factor in the brackets on the right side of equation (13) 

is about .001.  Disregarding that modest amount, we can write the discrete approximation 

∆e0 (t) ≈ (c/b)          (14) 

or that life expectancy increases linearly by about (c/b) years each year.  Since b is typically 

close to 0.1, a 1% annual decline in mortality over time (i.e. c=.01) implies that life expectancy 

increases by about 0.1 years per year.  

Changing Population Size and Crude Vital Rates.  The change over time in the size of the 

model population can be found by differentiating equations (11) and (12).  That yields 

dCAL(t)/dt = [c/(b-c)] [ ∫p(x,t) µ(x,t) dx - ∫p(x,t) µ(cx/b, t) dx ]   (15) 

where the integrals range from 0 to ∞. [Unless otherwise indicated, all integrals used have that 

range.] The first integral on the right of equation (15) represents the total number of deaths in the 

model population at time t, and can be denoted D(t).  The second integral, D#(t), is the number 
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of deaths that would occur if the death rate at age x were given by exp[A+cx-ct], i.e. the force of 

mortality at age (c/b)x.  With b=0.1 and c=0.01, the death rate at age 100 would then be 

µ([.01/.1]100,t) or µ(10,t).  At t=0, those parameters yield a death rate at age 100 of about 

.00004, so we can generally disregard the small offset introduced by D#(t).  In discrete terms, we 

know that 

∆CAL(t) = 1 - D(t)         (16) 

as the increase in size during year t equals the one birth minus the number of deaths during the 

year.  Ignoring D# and using equation (16) in equation (15) yields 

∆CAL(t) ≈ (c/b)         (17) 

Thus the size of the model population increases annually by, approximately, amount (c/b), the 

same linear increase found for life expectancy in equation (14).  Since with one birth each year 

∆CAL cannot be greater than 1, equation (17) is not appropriate when c≥b.  Instead, when c≥b, 

the value of ∆CAL approaches 1. 

The time t growth rate of the model population, RNI(t), can be approximated by 

disregarding D#(t) in equation (15), dividing both sides of that equation by CAL(t), and noting 

that the crude death rate at time t, CDR(t) = D(t)/CAL(t).  The result is 

d ln CAL(t)/dt = RNI(t) ≈ [c/(b-c)] CDR(t)      (18) 

where ln indicates the natural logarithm function.  Because RNI=CBR-CDR and CBR=1/CAL, 

equation (18) implies that the crude birth rate at time t, CBR(t) can be approximated by 

CBR(t) ≈ [b/(b-c)] CDR(t) ≈ (b/c) RNI(t)      (19) 

Annual Number of Deaths.  From equations (18) and (19), the total annual number of 

deaths can be written 
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D(t) ≈ (b-c)/b         (20) 

The linear growth in the size of the population thus results from a fixed number of births and an 

approximately constant number of deaths.   

The constancy in the number of annual deaths is a key feature of the present model.  It is 

not immediately obvious that the changing mortality rates, when applied to a wedge-period 

population whose size and structure are also changing, would yield a nearly constant number.  

To try and appreciate why that happens, let us ignore the typically very small ecx term on the 

right hand side of equation (11) and write 

p*(x,t) = exp[ -eA+bx-ct/(b-c) ] = exp[ -µ(x,t)/(b-c) ]    (21) 

Equation (21) shows that the approximate wedge-period population p*(x,t) is a relatively simple 

function of µ(x,t)—that is of a single age-time-specific force of mortality.  Using p*(x,t), the 

approximate number of deaths at time t is 

D*(t) = ∫ exp[-µ(x,t)/(b-c)] µ(x,t) dx      (22) 

If u=µ(x,t), then du=µ(x,t)dx/b, and that substitution allows the integral in equation (22) to be 

evaluated analytically.  Simplifying the result, by assuming that µ(0,t) is zero, yields equation 

(20).  The exponential relationship between p* and µ in equation (21), and the fact that  

(∂/∂x) p*(x,t) = p*(x,t) µ(x,t) [-b/(b-c)]      (23) 

causes the changes in population and mortality to offset one another over the lifespan and keep 

D(t) approximately constant. 

Age-Specific Growth and Population Entropy.  Following Preston and Coale (1982), the 

age-specific growth rate of the population age x at time t, r(x,t), is given by 

r(x,t) = ∂ ln p(x,t)/∂t = [c/(b-c)] [ µ(x,t) - µ(cx/b, t) ]    (24) 
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Using equations (11) and (21), equation (24) can be rewritten as 

r(x,t) = -c ln p(x,t) ≈ [c/(b-c)] µ(x,t)      (25) 

The greater the force of mortality, or the higher the age, the faster the rate of age-specific 

growth.  Using equation (25), the crude rate of natural increase of the model population at time t 

is given by 

RNI(t) = ∫p(x,t) r(x,t) dx / CAL(t) = -c ∫p(x,t) ln p(x,t) dx / CAL(t)  (26) 

The entropy of a population at time t, Hp(t), provides a measure of the randomness (or the 

information content) in the age distribution at time t.  The minimum value of Hp(t) is 0; a large 

value, say 1, indicates a high degree of randomness (or little information content) in the 

population distribution.  Following the customary manner of defining entropy in mortality 

analyses (cf. Keyfitz 1977; Vaupel and Canudas Romo 2003), we can write 

Hp(t)  = -∫p(x,t) ln p(x,t) dx / CAL(t)      (27) 

[The minus sign is introduced because ln p(x,t) < 0.]  Equations (18), (26), and (27) show that  

d ln CAL(t)/dt = RNI(t) ≈ c Hp(t)       (28) 

From equations (19) and (28), it follows that  

CBR(t) ≈ b Hp(t)         (29) 

and 

CDR(t) ≈(b-c) Hp(t)         (30) 

 Thus the crude rates of birth, death, and natural increase are all approximated by simple 

functions of entropy and parameters b and c.  As equation (17) shows that the amount of increase 

in population size is approximately linear, equation (28) implies that Hp(t)→0 as t→∞.  The 

three crude rates thus decline monotonically over time as entropy decreases. 
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Mean Population Age.  The mean age of the model population at time t, Ap(t), is given by 

Ap(t) = ∫x p(x,t) dx / CAL(t)        (31) 

Taking the time derivative of Ap(t) yields2 

dAp(t)/dt = Ap(t) { [∫x p(x,t) r(x,t) dx / ∫x p(x,t) dx] - c Hp(t) }   (32) 

Numerically, as shown below, Ap(t) is close to e0 (t)/2, and consequently ∆ Ap(t)≈c/(2b).   The 

mean age of the population increases linearly by an amount that is approximately half the size of 

the increase in life expectancy and population size. 

Mean Age at Death.  The mean age at death in the model population at time t is 

Ad(t) = ∫x p(x,t) µ(x,t) dx / D(t)       (33) 

The time derivative of Ad(t) gives 

dAd(t)/dt = Ad(t) { [∫x p(x,t) µ(x,t) r(x,t) dx / ∫x p(x,t) µ(x,t) dx] -  

∫p(x,t) µ(x,t) r(x,t) dx / ∫p(x,t) µ(x,t) dx]}     (34) 

To simplify equations (33) and (34), we can use approximate population p*(x,t) from equation 

(20), equation (23), and integration by parts to write 

∫ x p*(x,t) µ(x,t) dx = [(b-c)/b] CAL(t)      (35) 

Equations (20) and (33) then yield 

Ad(t) ≈ CAL(t)         (36) 

The approximate equality between Ad(t) and CAL(t) parallels the exact equality found in the 

Bongaarts-Feeney mortality model [ cf. equation (6)].  It also implies that ∆ Ad (t)≈c/b, and that 

the population mean age at death increases linearly in the same manner as e0  and CAL. 

Generating Model Population Values Over Time.  From the general expression in 

equation (11), we can write 
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p(x,t) = exp[ -e-ct {eA+bx - eA+cx } /(b-c)] = p(x,0)^(e-ct)    (37) 

where the notation z^y indicates zy.  At every age, the wedge-period population at time t is thus 

the wedge-period population at time 0 raised to the power e-ct.  As c>0 and p(x,0)≤1, equation 

(37) indicates that p(x,t)→1 as t→∞.  That ultimate uniform population distribution implies zero 

mortality and is consistent with zero entropy. 

The same procedure can be followed with respect to the number of survivors to age x in 

the life table based on the death rates prevailing at time t.  Equation (9) can be rewritten 

pLT(x,t)  = exp[ e-ct {(eA - eA+bx ) / b}] = pLT(x,0) ^[e-ct]    (38) 

Every period life table can thus be generated directly from the time 0 life table. 

The Special Case of b=c.  Since b, the rate of increase in mortality over age, is 

approximately 0.1 in contemporary human populations, this special case is one of extremely 

rapid mortality decline.  When b=c, the force of mortality is given by 

µ(x,t) = exp[ A + c(x-t) ]        (39) 

Equation (39) implies that the death rate of the cohort born at time τ is exp[A-cτ] at every age.  

The cohort probability of survivorship to age x at time t is 

p(x,t) = exp[ -x e{A+c(x-t)} ] = exp[ -x µ(x,t) ]     (40) 

Equations (9), (12), and (26) hold.  Equation (14) is valid as well, with ∆e0 (t) ≈ 1. 

The Bongaarts-Feeney Mortality Model With a Constant Rate of Decline.  The present 

model is not a Bongaarts-Feeney mortality model.  It expresses mortality decline in terms of the 

force of mortality function specified in equation (8), and all other functions follow from that 

specification.  Neither the force of mortality function µ(x,t) nor the wedge-period population 

function p(x,t) shifts along the x-axis over time.  However, it is similar to a Bongaarts-Feeney 
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model with linear shifts.  If µ(x,0)=eA+bx and the Bongaarts-Feeney shift function F(t) in 

equations (4) and (5) is (c/b)t, then the Bongaarts-Feeney force of mortality is given by 

µBF(x,t)=eA+bx-ct (for x≥F(t))  and  

pBF(x,t) = exp[ -eA-ct(ebx - ect)/(b-c) ]  , x≥F(t)   (41) 

When x<F(t), µBF(x,t)=0 and pBF(x,t)=1.   

Equation (41) shows that the Bongaarts-Feeney model population at age x and time t 

[x≥(c/b)t] differs from the present model population of equation (11) in terms of the last 

exponential term on the right (i.e. it has ect rather than  ecx).  Even with Gompertz-type mortality 

and linear shifts, the sliding Bongaarts-Feeney model has a different form.  The continually 

shifting age below which equation (41) does not apply means that equations (37) and (38), which 

generate model population sizes and period life table values, do not hold.  Numerical differences 

may be modest, however.  When ct and cx are considerably smaller than bx, they have little 

impact on population size and composition.  Ignoring the ecx term in equation (11) is equivalent 

to neglecting the D#(t) term in equation (15), or simplifying the population distribution using 

equation (21).  That simplification takes advantage of the model’s very low mortality at younger 

ages and, as we see below, generally produces good estimates. 

Generalizing the Model to Allow Varying Rates of Mortality Decline.  Because dynamic 

mortality models with a constant annual number of births do not involve feedbacks between 

mortality and fertility, equations (8)-(12) can be generalized to accommodate time varying 

changes in the rate of mortality decline.  Given the force of mortality function 

µ(x,t) = exp[ A + bx - f(t) ]        (42) 

for a specified function f(t), the wedge-period populations can be found from the general survival 
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relationship 

                                      x 
p(x,t) = exp[ - ∫ µ(a, t-x+a) da ]       (43) 

                                     0 
Relationships in such models are likely to be more complex than those developed here for the 

model of equation (8), but have yet to be analyzed in depth. 

 NUMERICAL ILLUSTRATIONS OF CONTINUOUSLY DECLINING MORTALITY 

In equation (8), the force of mortality is defined in terms of two readily interpretable 

parameters: b, the rate of mortality increase over age and c, the rate of mortality decrease over 

time.  Historically and contemporaneously, the value of b has been about 0.1.  Recently mortality 

rates in a number of developed countries have declined by about 1% per year.   Focusing on 

parameters with similar values, Figure 1 shows force of mortality curves at different time points 

for 4 combinations of b and c.  In all cases, the curves have a similar shape and the µ values 

decline over time.  When b rises from 0.1 to 0.125, µ increases substantially (and the graph stops 

at age 110 instead of 120).  When the rate of mortality decline increases from 0.008 to 0.012, µ 

values decrease appreciably for all t>0. 

Figure 2 shows model population sizes and structures for the same 4 parameter 

combinations.  The p(x,t) curves follow a similar overall pattern, though the level of survivorship 

varies substantially over time and between models.  It is clear from the figures that while a 

Gompertz form force of mortality function leads to rapid rises in mortality over age, that form 

does not imply any limit to survivorship.   

In Figure 3, we examine four different model functions, focusing on b=0.1 and the two 

previous values of c (that are a bit under and a bit over 1%).  Panel A shows the nearly linear 

increase in CAL over time, and that the slopes of those curves are close to c/b.  For example, 
 
 16 



when c=.008, the size of the population increases from 82.53 persons at time 0 to 98.52 persons 

at time 200, an average annual increase of .0799.  The underlying values for those functions, and 

for three other model measures, are shown in Table 1.   

Period life expectancy values are shown in Panel B of Figure 3.  The slopes of the e0 (t) 

curves are very similar to those of CAL(t), and their levels differ only slightly.  With c=0.008, 

e0(0) is 83.36, larger than CAL(0) by 0.83.  At time 200, e0 (200) is 99.35, which again exceeds 

CAL(200) by 0.83.  The steady increase in life expectancy, about one month per year when 

c=0.008, is not large compared with the long term trend found by Oeppen and Vaupel (2002). 

Panel C shows values for the mean age at death, and virtually reproduces Panel A.  Table 

1 shows that, to two decimals, the values of Ad (t) are usually the same as those of CAL(t).  With 

one birth per year, the model population’s size is identical to its average age at death.   

Panel D of Figure 3 shows values for the mean age of the population.  The change over 

time is again close to linear, with a slope near c/2b.  For example, with c=0.008, the mean 

population age increases from 42.25 at time 0 to 46.17 at time 100 and 50.09 at time 200.  

Between times 0 and 100, and between times 100 and 200, the average annual increase is 0.0392. 

  Table 1 shows the decline in the population’s crude death rate, as declining mortality 

overrides the effects of population aging.  With one birth per year, the population’s crude birth 

rate also declines as population size increases.  The population maintains a positive rate of 

natural increase each year, since the crude birth rate always exceeds the crude death rate.  

Although RNI(t) declines over time and is modest in size, it indicates that the population could 

continue growing even if fertility were slightly below replacement.  The values in Table 1 

confirm the approximate relationships in equations (28), (29), and (30), as entropy at time t is 
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closely related to the crude rates of birth, death, and natural increase.       

A concern often associated with mortality improvements is their impact on pension 

systems.  Continuing mortality declines and the accompanying rise in the proportion of persons 

over 65 is virtually certain to lead to increases in the “normal” age of retirement.  To illustrate 

how the present model can be used to analyze the population dynamics involved, we consider a 

simple scenario.  Let W be the time 0 ratio of (i) the retired population (i.e. the number of 

persons above the initial retirement age of 65) to (ii) the economically active population (i.e. the 

number of persons between exact age 20 and retirement age).  Then assume that every year the 

retirement age increases so that the retired population/active population ratio remains equal to 

W.  Figure 4 depicts how the age of retirement increases under that scenario for b=0.1 and four 

different values of c.  The increase in the age of retirement is quite linear, with the slope 

approximately equal to 6.8c.  With c=0.008, the retirement age rises from 65 to 70.4 years at 

time 100, and to 75.9 years at time 200.  Under this scenario, years spent in the labor force and in 

retirement both increase by about the same factor.  When c=0.008, the time 0 figures imply that a 

person age 20 can expect to live 44.1 out of the 45 active years, while a person age 65 can expect 

to live another 20.4 years retired.  At time 100, the comparable figures are 49.7 years active and 

22.5 years retired.   

 SUMMARY AND CONCLUSIONS 

A Gompertz form dynamic population model can capture relationships in populations 

experiencing continually declining mortality.  The cross-sectional population of the model can 

be termed a wedge-period population, because it is not a consequence of either period or cohort 

rates but of a “wedge” of rates.  The form of change in many model variables is very nearly 
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linear, and is driven by the ratio of mortality improvement parameter c to aging parameter b.  As 

death rates retreat to ever higher ages, survivorship patterns change uniformly, retaining the 

same overall pattern.  The population size and structure at any time, and the life table for any 

period, can be found from simple transformations of the time 0 values.  Even with a constant 

annual number of births, the population steadily increases in size by an amount equal to c/b.  At 

any time, its rate of natural increase is determined by its entropy value multiplied by parameter c. 

 As the mean age of the population continues to rise, the age at retirement is likely to advance, 

and both can increase by a fixed annual amount that reflects the pace of mortality decline.  As 

the stable population model has provided an analytical foundation for many demographic 

analyses, the present model of equation (8) can provide a simple, flexible framework for 

analyzing the implications of continually declining mortality on longevity and on the size and 

composition of the population. 
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 ENDNOTES 

1. There is a minor technical defect in the derivation of µ(x,t) given in Appendix 2 of 

Bongaarts and Feeney (2002).  Since µ*(x,t)=(∂/∂x) ln p(x,t) is zero for x≤F(t), their equation 

(13b) should state 

µ(F(t),t) = (1 - dF(t)/dt) µ*(F(t),t)       (E.1) 

2.  Schoen and Kim (1992) provided a general method for finding the time derivatives of 

many demographic functions.  Of particular relevance here, the derivative of the mean age of G 

(where G can denote population size or death) is given by 

dAG(t)/dt = AG(t) [ RGx - RG ]       (E.2) 

where AG is the mean age of G, RGx is the overall rate of increase of G times age, and RG is the 

overall rate of increase of G.  Equations (32) and (34) have the form of equation (E.2). 
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Figure 1. The force of mortality, µ(x,t) in model populations with different rates of mortality increase over age (x) and mortality 
improvement over time (t) 

Panel A: b=.1, c=.008
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Panel B: b=.1, c=.012
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Note: The force of mortality is defined by µ(x,t)=eA+bx-ct. The value of A is fixed at -11.2146081, so that µ(50,0)=.002 when b=.1. 
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Figure 2. Model population size and structure [p(x,t)] with different rates of mortality increase over age (x) and mortality 
improvement over time (t) 
 

Panel A: b=.1, c=.008
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Note: Population values generated using equation (11) with µ(x,t)=exp[-11.2146081+bx-ct]. 
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Figure 3. Model population size, mean age, period life expectancy, and mean age at death, for b=.1 and for c=.008 and .012. 
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Panel C: Mean age at death (Ad)
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Panel B: Period life expectancy [e0(t)]
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Panel D: Mean age of population (Ap)
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Figure 4. Retirement age needed to maintain a constant ratio of persons retired to persons 
in the labor force, model populations with b=.1 and different values of c 
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Table 1. Model population measures for b=0.1 and for c=.008 and .012 
 
                                                       Panel A: c=.008 
 
Time (t)  CAL(t)       e0(t)      Ad(t)       Ap(t)      cdr(t)          rni(t)      Hp(t) 
0 82.53 83.36 82.53 42.25 0.01115 0.00097 0.12097
5 82.93 83.76 82.93 42.45 0.01109 0.00096 0.12039
10 83.33 84.16 83.33 42.64 0.01104 0.00096 0.11982
15 83.73 84.56 83.73 42.84 0.01099 0.00095 0.11926
20 84.13 84.96 84.13 43.04 0.01094 0.00095 0.11870
25 84.53 85.36 84.53 43.23 0.01088 0.00095 0.11814
30 84.93 85.76 84.93 43.43 0.01083 0.00094 0.11759
35 85.33 86.16 85.33 43.62 0.01078 0.00094 0.11705
40 85.73 86.56 85.72 43.82 0.01073 0.00093 0.11651
45 86.13 86.96 86.12 44.01 0.01068 0.00093 0.11597
50 86.53 87.36 86.52 44.21 0.01063 0.00092 0.11544
55 86.93 87.76 86.92 44.40 0.01058 0.00092 0.11491
60 87.33 88.16 87.32 44.60 0.01054 0.00092 0.11439
65 87.73 88.56 87.72 44.79 0.01049 0.00091 0.11387
70 88.13 88.96 88.12 44.99 0.01044 0.00091 0.11336
75 88.53 89.36 88.52 45.19 0.01039 0.00090 0.11285
80 88.93 89.76 88.92 45.38 0.01035 0.00090 0.11235
85 89.32 90.15 89.32 45.58 0.01030 0.00089 0.11185
90 89.72 90.55 89.72 45.77 0.01025 0.00089 0.11136
95 90.12 90.95 90.12 45.97 0.01021 0.00089 0.11086
100 90.52 91.35 90.52 46.17 0.01016 0.00088 0.11038
105 90.92 91.75 90.92 46.36 0.01012 0.00088 0.10990
110 91.32 92.15 91.32 46.56 0.01007 0.00088 0.10942
115 91.72 92.55 91.72 46.75 0.01003 0.00087 0.10894
120 92.12 92.95 92.12 46.95 0.00999 0.00087 0.10847
125 92.52 93.35 92.52 47.15 0.00994 0.00086 0.10801
130 92.92 93.75 92.92 47.34 0.00990 0.00086 0.10755
135 93.32 94.15 93.32 47.54 0.00986 0.00086 0.10709
140 93.72 94.55 93.72 47.73 0.00982 0.00085 0.10663
145 94.12 94.95 94.12 47.93 0.00978 0.00085 0.10618
150 94.52 95.35 94.52 48.13 0.00973 0.00085 0.10574
155 94.92 95.75 94.92 48.32 0.00969 0.00084 0.10529
160 95.32 96.15 95.32 48.52 0.00965 0.00084 0.10485
165 95.72 96.55 95.72 48.72 0.00961 0.00084 0.10442
170 96.12 96.95 96.12 48.91 0.00957 0.00083 0.10398
175 96.52 97.35 96.52 49.11 0.00953 0.00083 0.10355
180 96.92 97.75 96.92 49.31 0.00949 0.00083 0.10313
185 97.32 98.15 97.32 49.50 0.00945 0.00082 0.10271
190 97.72 98.55 97.72 49.70 0.00942 0.00082 0.10229
195 98.12 98.95 98.12 49.90 0.00938 0.00081 0.10187
200 98.52 99.35 98.52 50.09 0.00934 0.00081 0.10146

Note: Symbols refer to functions defined in eqns (12), (10), (33), (31) (18), (18), and (27) 
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Table 1 (con’t). Model population measures for b=0.1 and for c=.008 and .012                  
                        

Panel B: c=.012 
 
Time (t)  CAL(t)       e0(t)      Ad(t)       Ap(t)      cdr(t)          rni(t)      Hp(t) 
0 82.09 83.36 82.08 42.04 0.01072 0.00146 0.12158
5 82.69 83.96 82.68 42.33 0.01064 0.00145 0.12071
10 83.29 84.56 83.28 42.62 0.01057 0.00144 0.11985
15 83.89 85.16 83.88 42.92 0.01049 0.00143 0.11901
20 84.49 85.76 84.48 43.21 0.01042 0.00142 0.11817
25 85.09 86.36 85.08 43.50 0.01034 0.00141 0.11735
30 85.69 86.96 85.68 43.80 0.01027 0.00140 0.11654
35 86.29 87.56 86.28 44.09 0.01020 0.00139 0.11574
40 86.89 88.16 86.88 44.38 0.01013 0.00138 0.11494
45 87.48 88.76 87.48 44.68 0.01006 0.00137 0.11416
50 88.08 89.36 88.08 44.97 0.00999 0.00136 0.11339
55 88.68 89.96 88.68 45.26 0.00992 0.00135 0.11263
60 89.28 90.55 89.28 45.56 0.00986 0.00134 0.11188
65 89.88 91.15 89.88 45.85 0.00979 0.00133 0.11114
70 90.48 91.75 90.48 46.14 0.00973 0.00132 0.11041
75 91.08 92.35 91.08 46.44 0.00966 0.00132 0.10969
80 91.68 92.95 91.68 46.73 0.00960 0.00131 0.10898
85 92.28 93.55 92.28 47.03 0.00954 0.00130 0.10828
90 92.88 94.15 92.88 47.32 0.00948 0.00129 0.10758
95 93.48 94.75 93.48 47.62 0.00941 0.00128 0.10690
100 94.08 95.35 94.07 47.91 0.00935 0.00127 0.10622
105 94.68 95.95 94.67 48.20 0.00930 0.00127 0.10555
110 95.28 96.55 95.27 48.50 0.00924 0.00126 0.10489
115 95.88 97.15 95.87 48.79 0.00918 0.00125 0.10424
120 96.48 97.75 96.47 49.09 0.00912 0.00124 0.10359
125 97.08 98.35 97.07 49.38 0.00907 0.00124 0.10295
130 97.68 98.95 97.67 49.68 0.00901 0.00123 0.10232
135 98.28 99.55 98.27 49.97 0.00896 0.00122 0.10170
140 98.88 100.15 98.87 50.27 0.00890 0.00121 0.10109
145 99.48 100.75 99.47 50.56 0.00885 0.00121 0.10048
150 100.07 101.35 100.07 50.86 0.00879 0.00120 0.09988
155 100.67 101.95 100.67 51.15 0.00874 0.00119 0.09929
160 101.27 102.55 101.27 51.45 0.00869 0.00118 0.09870
165 101.87 103.15 101.87 51.74 0.00864 0.00118 0.09812
170 102.47 103.75 102.47 52.04 0.00859 0.00117 0.09755
175 103.07 104.35 103.07 52.33 0.00854 0.00116 0.09698
180 103.67 104.95 103.67 52.63 0.00849 0.00116 0.09643
185 104.27 105.55 104.27 52.92 0.00844 0.00115 0.09587
190 104.87 106.15 104.87 53.22 0.00839 0.00114 0.09533
195 105.47 106.75 105.47 53.51 0.00834 0.00114 0.09478
200 106.07 107.35 106.07 53.81 0.00830 0.00113 0.09425

Note: Symbols refer to functions defined in eqns (12), (10), (33), (31) (18), (18), and (27) 
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