
ABSTRACT 
Exploratory data analysis methods usually rely on parametric estimates with the 
possibility of bias given certain types of data.  An alternative, non-parametric approach to 
characterize multivariate data yields unbiased equivalents to dispersion and peakedness 
measures of the data.  The primary objective is to apply this moment-free method, 
originated from probabilistic geometry in the past 15 years, to multivariate county-level 
North Carolina infant mortality data following with an extension to exploration of infant 
mortality differentials, with the expectation that this method can be applied to a wide 
range of other types of data. 
 
INTRODUCTION 
This paper outlines the application of an alternative method to exploratory data analysis 
for multi-dimensional data.  The method, originating from probabilistic geometry in the 
past fifteen years, when applied to infant mortality (IM) data, provides information 
regarding distributional changes over four groups of years.  The aim of the proposed 
method is an attempt through exploratory data analysis techniques to supply a unique 
perspective on changes that exist in multivariate IM distributions over time, including 
race and education.  Verification of any changes occurs through a moment-free method 
based on a statistical depth function termed simplicial depth (Liu 1990).  Specifically, the 
exploratory analysis based on depths produces centrality, dispersion and Kurtosis 
measures from depth measures.  Although inferences are made from the distributional 
changes regarding differentials in infant mortality and race, the aim of this paper is to not 
to quantify an infant mortality differential between racial groups, as would a parametric 
analysis.   
 
Depths are measures assigned to each point in a data set indicating their closeness to the 
most central point of the data.  There are varieties of depths and simplicial depths are 
useful since they require fewer distributional assumptions than another commonly used 
depth, the Mahalanobis depth.  In fact, knowing any resemblance to a distribution is not 
necessary.  In particular, the use of simplicial depths (SD) offer less biased estimates of 
data characteristics, assuring conclusions that are more accurate. 
 
One motivation behind SD use is its robust estimates even with asymmetric data.  Often 
exploratory analysis fails with data that do not fit the symmetric assumption.  The 
univariate infant mortality data used from North Carolina from 1989-2000 show 
asymmetry (not shown) with standardized normal curves fitted to the histogram of data.  
Additionally, using depths to obtain data characteristics allows examination of 
multivariate data, in our case allowing the examination of IMR, race and educational 
measures simultaneously instead of examining characteristics individually.  The 
possibility to analyze multivariate data also leads to the inferences regarding IM 
differentials that follow in the discussion. 
 
A description of the data follows in the methods section, which also includes a 
description of simplicial depth formation as well as depth applications.  After the 
methods, results from three depth applications used with North Carolina infant mortality 
data come next, and lastly, there is a discussion of the results and conclusion. 



 
METHODS 
 
Depth Background and Formation 
Depths apply to data in all dimensions, but three dimensions will be the maximum 
number of dimensions in this paper.  
 
A simplicial depth produces �center-outward ordering� of each of the county points using 
their geometric distributional properties.  In other words, �the simplicial depth is defined 
to measure the relative position of a point w.r.t. a distribution and thus to capture the 
underlying probabilistic geometry� (Liu 1999:792).  With simplicial depths, one can be 
assured of determining outlying points while still respecting the probabilistic nature of 
the data -- even with asymmetric data.  Most importantly, simplicial depth (SD) yields 
almost identical results as a parametric method with symmetric data, but outperforms its 
parametric counterpart in best identifying outlying points in an asymmetric distribution 
such as a bivariate exponential distribution (Liu 1999).  Other methods, such as 
Mahalanobis depth determine the quadratic distance with respect to one point, the mean, 
which may not consider the structure of the data if certain distributional assumptions are 
not met. 
 
In empirical terms, Figure 1 demonstrates the fit of SD values to the asymmetric data in 
the two-dimensional plot.  There are three contours, each one representing a quartile of 
data points according to their SD value.  The innermost contour encloses the 25 most 
central points as determined by the SD.  Those points outside of the outermost ring are 
the 25 percent least central points.  The most central point of that distribution is an �O� 
shape.  The contours in Figure 1 have irregular shapes owing to the nature of simplicial 
depths and the properties of the data.  Drawing contours according to a depth with 
symmetric data assumptions (not shown) yields more symmetric shapes and with these 
data, the contours, representing centrality of the data, would not conform well to the 
oblong shape of the data also yielding misleading information regarding the status of a 
point relative to its center. 
 
Given the suitability of this method, a brief description of the depth formation, from a 
three-dimensional data cloud as shown in Figure 2 and otherwise referred to as a 
collection of data points, is in order.  The first step is to count the number of unique 
tetrahedrons from the cloud that encompass one point in the cloud.  This number, when 
divided by the total number of unique tetrahedrons formed within this data cloud, equals 
the empirical simplicial depth for that one point.  The center of the data cloud in this 
scheme is the point(s) having the most enclosures.  Applying this approach to one-
dimensional data would produce a median.  In this particular application the following 
variables comprise the axes for the three dimensional space: percent black infants, 
number infant deaths per 1000 live births, and percent not completing high school (Figure 
2).  It�s also important to note that while the data is of three dimensions, the depth 
assigned to one point yields a one dimensional statistic. 
 



In a more formal sense and directly relating to this applied situation, simplicial depth (Liu 
90) at point x with respect to continuous unknown distribution F has the following 
definition: 
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Where SD(Fn;x) indicates the probability point x is in a randomly chosen simplex with 
four vertices in the data cloud, unknown distribution F, with n points.  In this application, 
n equals 66.  Formula 1 is the empirical version of SD, equaling the proportion of all 
possible simplices from the sample points that enclose the point in question.  The 
numerator being all possible choices of tetrahedrons and the numerator, a sum of I(.), 
which is an indicator function signifying whether or not the simplex encloses the point: 
�1� if yes, �0� if not. In this case, the simplex is a tetrahedron with four vertices in 3-
dimensional real space (Figure 2).  Another example would be two-dimensional space in 
which the simplex would be a triangle with three vertices.  Thus, for three dimensions all 
possible tetrahedrons will be evaluated point by point to determine if they include that 
point within its boundaries. 
 
Programs formed from SAS/BASE© software generated simplicial depth values through 
algorithms designed to measure and compare volumes of tetrahedrons (Von Holle 2003). 
 
Source of Data 
Linked infant birth/infant death files for 1989-2000 from the North Carolina State Center 
for Health Statistics serve as the basis for analyses (Odum Institute 2002).  Data reporting 
was uniform from year to year with one exception: infant race reporting was based on 
that of the mother starting in 1990 instead of being based on race of both mother and 
father. 
 
The objective in forming the multivariate distribution of interest was to obtain three 
county-level estimates.  Infant mortality was the first estimate of interest.  Secondly, 
among the non-Hispanic population, percentage of black mothers, also considered the 
percent of black births, was another estimate of interest.  Third and last, the percent not 
completing high school provides a proxy estimate of the socio-economic status of a 
county, adding another dimension to the analysis.  Characterizing the change of kurtosis 
and scale of a multivariate distribution by time of this multivariate distribution assists in 
determining direction of differential changes. 
 
Pooling of birth and infant death counts occurred at the county level, and any county with 
less than 1,000 births per year was pooled with an adjacent county.  The result was four 
sets of three successive years of pooled data totaling 1,000+ live births.  There are 100 
counties in North Carolina and 66 county units after pooling for each of the four groups 
of three years taken from 1989 to 2000.  Having 1,000+ live births for the denominator of 
each county unit ensured more precision in the resulting proportions.  Several more 
criteria applied for inclusion: the record had to be a singleton black or white non-
Hispanic birth to narrow the scope of analysis and ensure consistency.  Inclusion of the 



variable indicating completion of high school served as a proxy for socio-economic status 
in the analysis since prior studies have indicated its influence on infant mortality 
(Hummer 1999) and this variable is a reliable one (Buescher 1992). 
 
The North Carolina Center for Health Informatics and Statistics (CHIS) reported data for 
years up to 1998 differently than those on or after 1998.  Because of this, infant death 
probability calculations change to accommodate this difference in reporting.  Before 1998, 
deaths were organized and linked according to the birth cohort; afterwards they were by 
death cohort.  Adjustments were done to approximate a birth cohort estimate from 1998-
2000 using a bridge file provided by CHIS with assumptions that death rates were 
constant over the year 2000. 
 
Simplicial Depth Applications 
SD are useful in their own right as a means to assess the centrality of data points in a 
robust manner, but they also have use as order statistics (Liu 1999).  From calculations 
exclusively involving SD and their properties in two or three dimensions in this specific 
application, there exist three interesting proxies to dispersion, kurtosis and consistency.   
Each of the 66 county groups provides information to conduct further analyses that assist 
in the assessment of the distributions from one group of years to the next.  For example, 
contours based on SD structured in the data cloud, which in this paper are in three 
dimensions, and the rate of change along contours outward from the center, neatly 
characterize some aspects of the distribution. 
  
There are different uses of depth possible to characterize a distribution, but only three 
applications are outlined in this paper.  These three applications and interpretations (Liu 
1999) use simplicial depths: 
1) Data-Depth Plots (DD-plot) 
2) Dispersion of data by way of Convex Hull Volume plots 
3) Shrinkage Plots (Kurtosis) 
 
Analysis 1 -- Data-Depth Plots 
Only the empirical version of the DD-plot is possible since the distribution of data is 
unknown.  The approach is simple: take all points from both distributions in question, 
determine the depth of each of those points according to one distribution, and plot that 
value versus the depth according to the other distribution.  For example, for the plot of 
1989-1991 versus 1992-1994 data, has 132 points, each point with a depth according to 
the 1989-1991 distribution of points (64) and a depth according to the 1992-1994 
distribution of points (64).  This two dimensional display will show a line very close to 
the diagonal if the two distributions from different points in time are identical.   If the 
distributions are not similar, by either skewness, scale, kurtosis, location or another 
source then the line will differ from the straight-line diagonal.  One case would be 
curvature of the data above the diagonal line, indicating a scale or kurtosis difference. 
 
Analysis 2 � Dispersion by way of Volume Plots 
Plots of the volume formed by the data cloud as measured through a convex hull volume 
and SD values assigned to each point in the three dimensions can show how rapidly some 



distributions expand out compared to others.  Both definitions for volume plots and 
shrinkage plots rely on the definition of convex hulls with the most simplistic version 
existing in two dimensions with a hull consisting of lines connecting the outermost points 
of a data cloud in a two-dimensional plane.  A fixed convex hull is defined as Cn,p, where 
n denotes the number of points in the 3 dimensional space (Figure 2), and p denotes the 
pth central region.  For example, C66,0.5 is the convex hull that encloses 50% of the sixty-
six points closest to the center.  All convex hull volume calculations were done in 
MATLAB©. 
 
Plotting the volume of convex hulls Cn,p versus p, the pth central region, reflects data 
dispersion.  The degree to which the volume expands as the number of points expands 
from the center of the data cloud, according to their individual simplicial depth values, 
shows dispersion.  If one time period has larger volume at the proportion of points, p, 
than some other time period then the conclusion is that the former time period is more 
disperse than the latter. 
 
Analysis 3 � Shrinkage Plots � Kurtosis and use of Lorenz curve 
Up to this point, two methods have been shown to detect distributional changes in data, 
the first being a DD-plot and the second being a simple plot of the pth central fraction of 
points versus its corresponding convex hull volume.  The latter method addresses data 
dispersion and the former addresses type of distribution change if one exists.  Both 
methods serve as a check for generally defined changes in scale, kurtosis, or skewness, 
and have less complex interpretation than a shrinkage plot. 
 
Generation of shrinkage plots is a first step to assess kurtosis.  To construct one plot to 
assess kurtosis, start at a fixed convex hull volume, and then shrink the hull toward the 
center by a certain amount to yield another hull.  Measures include the percent of total 
volume lost through reduction to that new hull by a factor of s and the percentage of data 
points lost as you shrunk to a smaller space.  That step is repeated many times to produce 
values of loss of volume, V(s), and loss of points, l(s), both losses expressed as fractions 
of the starting volume and total data points.   
 
This technique shows proportional changes in volume in tandem with proportional 
changes in data points, and produces actual quantitative results: a Gini coefficient based 
on the Lorenz curve concept.  The Gini coefficient here functions as a measure of 
kurtosis of multivariate data (Liu 1999), the larger the coefficient the more kurtotic the 
data and the farther the line deviates from the diagonal.  Plotting V(s) vs l(s) generates a 
Lorenz curve and the area between the curve and the diagonal line is the Gini coefficient.  
A coefficient close to one would indicate most data would be concentrated in the middle 
of cloud with very distant outliers in the space � extremely kurtotic and with a shrinkage 
plot line far from the diagonal.  If the coefficient was close to zero then the line would 
follow the diagonal indicating points uniformly spread out over the space � not kurtotic at 
all. 
 
RESULTS 



Each of the three SD applications provides different information, one being more 
complex than others. 
 
Data-Depth Plots 
There is little consistency in the original data depth plots perhaps indicating a change in 
scale, kurtosis and or skewness in the empirical distribution.  After adjusting for the 
center and variance of the data (Liu 1999), the points draw much closer to the diagonal 
and distributional changes are more suspect.  Yet there are still suggestions of asymmetry 
about the diagonal indicating possible distributional changes.  This pattern is most 
evident for the 1989-1991 to 1992-1994 dd-plot, and the asymmetry hints of possible 
kurtosis and scale changes which can be verified with other types of plots.  It is also 
important to note that many points cluster near the origin due to more than one quarter of 
the data having ties at a zero depth value.   
 
After adjusting the data points, the most central point is not the same for the last two plots, 
suggesting locations shifts from one time point to another.  Accompanying this outcome, 
the center of the 3-d data cloud goes from (7.7=IMR, 15.9=percent black infants, 
20.8=percent not completing high school) in 1989-1991 to (7.9, 19.1, 15.5) for 1992-
1994, to (7.3, 18.2, 14.3) for 1995-1997 and finally (7.0, 19.5, 12.9) for 1998-2000.  
These shifts could be due to levels of any of the three variables but notable are the 
consistent declines in IMR and education rates. 
 
Dispersion Plots  
In this particular case with the North Carolina data having measures of IMR, race of child 
and education characteristics by county, the volumes of each data cloud per time group 
are similar and do not show any vast differences in volume change over with the 
exception of the 1989-1991 time period (Figure 4).  After covering 60% of the innermost 
points to the center of the distribution, the 60th central fraction of points, the consistent 
trend is one with the earliest time grouping having a denser, less disperse collection of 
points than the later years.  However, the earliest time grouping jumps ahead at the point 
indicating 100% of the data is covered.  What this plot indicates is that the earliest time 
covers the most total space and has points in its distribution with the largest distance 
between each other than the other time groups. 
 
One way to test any change in depth values from one group of years to the next, while 
assuming no location shift, is a Wilcoxon Rank-Sum test on the simplicial depth ranks for 
pairs of consecutive year groups (1989-1991 and 1992-1994, 1992-1994 and 1995-1997, 
and 1995-1997 and 1998-2000).  Each of the three test statistics are not significant at an 
alpha level of 0.05 suggesting that the differences in Figure 4 are due to chance.  In other 
words, the depths do not show a significant change from one time to the next indicating 
that instead of the points in each data distribution expanding or shrinking over time they 
have a similar dispersion level. 
 
This rank-sum test is not as powerful as parametric tests so a difference may exist, but 
could go undetected in this case.  However, the rank-sum test is the recommended 
method for testing changes in scale for empirical data (Liu 1993).  Besides lower power, 



this non-parametric test assumes the pairs of years are independent and few ties.  In 
reality, the sequence of years most likely is not independent, and over 30% of the data for 
any year group have tied SD leaving doubt about the validity of the statistic. 
 
Shrinkage Plots -- Kurtosis 
The shrinkage plots in Figure 5 shows this technique for the 60th central hull, enclosing 
the 60 percent innermost points in the distribution, displaying information on any 
differences in kurtosis of distributions for each set of years.  Typically, Gini coefficients 
produced from multiple pth central hull values versus p, compose one plot, and that plot 
provides a complete picture of kurtosis of the data.  However, so few observations 
outside of the 60th central hull without ties at zero, 6 SD values, made it difficult to get a 
sufficient number of volume calculations.  In addition, ties made it impossible to order 
the ranks as needed for meaningful arrangements of points for successive volume 
calculations outside the 60th central hull.  Despite this situation, single plots based on 
60th central hull information still provides useful clues regarding the change in 
distribution of county infant mortality rates relative to their education and race status. 
 
For the plot based on three-dimensions in figure 5, 1989-1991, the earliest group of years, 
stands out from other years which remain quite similar to one another.  This group of 
years is also the furthest from the diagonal indicating a more kurtotic distribution than the 
rest.  For example, after approximately covering 40% of the outermost points in the data 
cloud, the years 1989-1991 lost the most volume relative to its total volume covered in 
the cloud.  Progressing from the outermost hull to the center, 50% of the most extreme 
points from the center occupy over 90% of the total hull volume, with a sharp uptake in 
points for the remaining 10% volume before attaining the outer border of the hull for 
1989-1991.  In contrast, for the later time groupings, 50% of the points occupy less than 
84% of the total space � more data points occupying less volume.  This trend continues 
with progression towards the center of the data cloud, 100% of volume lost, thus, the 
1989-1991 period, with fewer points on the outer edges of the distribution and more 
towards the center of the distribution, is more kurtotic. 
 
The largest Gini coefficient of 0.4739 for 1989-1991, in the shrinkage plot based on 
three-dimensions, further substantiates the status of 1989-1991 as extreme.  In more 
explicit terms, as the pth central hull contracts towards the center of the distribution from 
its outermost border at the 60th central hull, the increase in proportion of points does not 
keep up with the proportional change in volume.  This means that the proportional 
change in number of points cannot maintain the same, larger, proportional change in 
volume and the points are more spread out. 
 
Adding shrinkage plots based on two dimensions, excluding either the education or race 
variable from the original 3-d data, provides better context for the shrinkage plot based 
on three dimensions.  There is a bigger difference between the 3-d and 2-d plot when 
removing race than when removing education, subsequently providing evidence for racial 
and IMR distributional differences along the education gradient changing more than 
educational and IMR distributional differences along a racial gradient.  Additionally, 
maintenance of differences from one group of years to the next, when switching 



shrinkage plots, from 3-d to 2-d plot with IMR and race, shows there still exist changes in 
distribution on the racial and IMR plane.  This maintenance rules out the possibility that 
only educational and IMR distributional changes are responsible for year-to-year 
differences.  Ultimately, the 3-d plot is the primary analysis tool, and the education 
variable appears to be a good addition to the examination since its distributions also 
change over time and can better define the racial and IMR distributions. 
 
DISCUSSION 
Methods producing characteristics of an empirical unknown distribution stand on their 
own for exploratory analysis, but further conclusions exist in that these characteristics 
reflect behavior of the variables themselves and the points in 3-d space they represent.  
Changes in distances between the points in three-dimensional space directly link to 
changes in dispersion or kurtosis.  Furthermore, the distance between two points on the 
infant mortality and racial plane signifies an infant mortality differential by race.  Figure 
1 demonstrates this concept in two dimensions for the North Carolina IMR data while 
figure 2 does so for three dimensions.  Adding the third dimension allows the 
consideration of education levels simultaneously, a version of a control, in the racial 
differential in infant mortality. 
 
If a distribution becomes less kurtotic over time then a direct conclusion would be that 
the distribution is less dense around the center and the points in the data cloud are 
migrating away from the center and vice versa for a distribution becoming more kurtotic 
over time.  For these data in particular, the dispersion and shrinkage plots based on 3-d 
data indicate that after the 1989-1991 period, the distribution becomes less concentrated 
around the center.  The earliest time has lower volume of its data cloud up to a certain 
point outward from the center, then that period of time jumps ahead in total volume, a 
finding confirmed in the shrinkage plot from Figure 5, which shows a more kurtotic 
distribution for 1989-1991.  One caveat is the limited nature of this shrinkage plot, based 
only on the 60th central hull. 
 
It is apparent from the shrinkage plot based on three-dimensions (Figure 5, Plot A) that 
1998-2000 remains less kurtotic than the 1989-1991 kurtosis measure (a Gini coefficient 
of 0.39 versus 0.47) with an implication that the absolute distance between a large group 
of points along at least one axis, in particular the race and IMR axis, is growing.  The 
difference between 1998-2000 and 1989-1991 values also imply less concentrated values 
about the center over the course of a decade, not a positive development if movement of 
points away from the center towards a higher IMR for certain racial levels.  The 
dispersion plot also shows that points may be growing apart on the race and IMR plane 
over time, but 1989-1991 having the largest scale (Figure 4) shows it having the most 
distant outliers from the center of the distribution implying the largest IMR differentials 
by race either with or without (not shown) the education factor. 
  
The other two groups of time, 1992-1994 and 1995-1997 grow farther apart from 1989-
1991 towards the diagonal, and this differential in IMR could be due more to education 
since this trend was not apparent in the 2-d shrinkage plot excluding education.  The 
change contributes to an intriguing observation that differentials in IMR may be growing 



over time by education levels for the earlier groups of time, when relying on the �the less 
kurtotic, the bigger the differentials� interpretation. 
 
Testing these results would be desirable to substantiate these claims based on entire 
population values, but the only option available is to test for a shift in SD between the 
time distributions, four in total, and one for each time.  This test, if significant, renders a 
change in scale as being statistically significant, yet this does not occur as noted in the 
results.  So there is no formal test here showing the trend in decreasing scale is a 
significant one.  However, while there is no change in location, an assumption for the test 
and shown by the DD-plots (Figure 3), this test is not ideal for this particular situation 
since the data have many ties and lack independence from one time group to the next. 
 
CONCLUSION 
Characterizations of the data via SD have led to certain conjectures about the status of 
infant mortality differentials.  Primary among them is the conclusion that county-level 
infant mortality differences on the racial plane, when considering education levels 
simultaneously, increased somewhat after 1989-1991.  This result comes from indications 
that the data distribution is getting to be less kurtotic and more disperse from the earliest 
period, 1989-1991.  At this point, using SD to target changes in distribution with 
implications for IMR differentials remain exploratory at best given limitations of the data 
and method, but do pose interesting questions.  Among them are: 1) Given the data depth 
plots, is the data becoming more reliable or are there IMR changes occurring? 2) Are 
these changes subtle enough to be missed by a parametric analysis, given the data at hand? 
and 3) If the distances between certain IMR are becoming larger across race values, what 
reasons exist for this development? 
 
Of course, confirmation of these findings via a parametric approach is possible, either on 
a county or individual level, with parametric coefficients indicating an average difference 
in IMR between racial groups.  However, the reason behind this analysis was to apply a 
new non-parametric approach robustly exploring the data with minimal assumptions and 
perhaps lending some evidence of the direction of infant mortality differentials by race.  
Another unique outcome from this SD application is the examination of extreme points in 
the distribution, something a coefficient from a parametric analysis omits. 
 
These characterizations of the data provide a different perception of the data, before a 
parametric modeling process occurs, yielding quantitative estimates of association and 
their related standard errors.  Considering a simpler alternative in terms of non-
parametric statistics, how would this application provide more information than a simple 
median based on adjusted data?  By obtaining the center of multivariate data from SD, 
the equivalent to a median in one dimension, the dispersion in all three dimensions 
contributes to the calculations.  Estimates are also available of dispersion and kurtosis of 
the distribution, again incorporating all three variables and their multivariate dispersion. 
 
While these findings are of interest, limitations of the analysis exist, some being data-
specific while others are methodological.  Specifically, during data analysis, certain 
issues cropped up.  First, counties with small populations receive just as much weight in 



simplicial depth calculations as the largest ones affecting the determination of central 
point of data.  It is logical to have larger counties with more births affect the center more 
than counties with fewer births.  Weighting in this type of calculation remains a challenge 
and possible direction for further effort due to the geometric approach.  Assigning a 
weight to a simplicial depth after its calculation is not sufficient.  Instead, the point must 
place multiple times into the same space to calculate depths relative to all other counties, 
contrary to continuous data assumptions.  In addition, making a county value more 
frequent in the space before depth calculations, will affect other points in the space, not 
just its own value, meriting a complete reevaluation of all points.   
 
Secondly, the nominal nature of the mortality and race variable does not allow for SD 
calculations on an individual level.  If the data were all continuous for each person, then 
SD values are possible for individuals instead of counties.  As a result, findings apply to 
county level observations and not individuals.  Due to any type of ecologic fallacy these 
results may not be applicable to individuals, yet the results are still of note since it�s valid 
for counties and allows them to be targeted.  
 
On a somewhat different note, simplicial depth calculations are by far more complicated 
than other methods like the Mahalanobis depth and require more computational resources.  
Adding dimensions to the computation is neither straightforward nor is it time efficient, 
and there exists no software package to determine SD.  The effort required to design an 
algorithm and process SD values from even a minor data set of 100 observations using 
naïve algorithms is to an order of n4 steps, n being 66 in this case and 4 being the number 
of dimensions (Rousseeuw 1996). 
 
After completing the simplicial depth calculations, other issues arose.  The large number 
of ties and properties of time dependent data hampers the formal test of depths, indicating 
a need for another type of test besides what currently exists in the literature. 
  
Despite these limitations, application of SD provides a different way to assess 
characteristics of a distribution and identification of outliers with no distributional 
assumptions required for the data.  This aspect alone is important given those types of 
assumptions for other methods such as the Mahalonobis depth.  In addition, the nature of 
geometric calculations provides a robust way to detect distributional characteristics 
regardless of shape of the data.  Finally, this analysis enables an indirect approach to 
examine mortality differentials through multivariate exploratory data anlaysis over the 
broadest perspective possible in as robust a manner as possible. 
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 FIGURE 1: SIMPLICIAL DEPTH CONTOUR PLOT FOR IMR VERSUS PERCENT BLACK BIRTHS. 
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FIGURE 2: THREE-DIMENSIONAL PLOT OF IMR, PERCENT MOTHERS WITHOUT HS EDUCATION 
AND PERCENT BLACK BIRTHS. 
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FIGURE 3: DATA-DEPTH PLOTS FOR IMR, RACE, AND EDUCATION DATA POINTS. 
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FIGURE 4:  DISPERSION PLOT FOR IMR, RACE, AND EDUCATION DATA POINTS 
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FIGURE 5: SHRINKAGE PLOTS FOR: PLOT A) IMR, RACE, AND EDUCATION DATA POINTS, PLOT B) 
IMR AND RACE DATA POINTS, AND PLOT C) IMR AND EDUCATION DATA POINTS 
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