
DRAFT updated 28 March 2004 

 

 

EVALUATION OF THE VARIANTS OF THE LEE-CARTER METHOD OF 

FORECASTING MORTALITY: A MULTI-COUNTRY COMPARISON 
 

 

Heather Booth,
1
 Australian National University 

Leonie Tickle, Macquarie University 

Len Smith, Australian National University 

 

Introduction 

 

As Keyfitz observed in 1981, one might have thought that population forecasters would 

be obsessed with eagerness to see how well they have done in the past, and that users 

would demand reports on the error of current forecasts; but ‘no such obsession or demand 

is to be seen’ (Keyfitz 1981:580). Population futures have always been a central concern 

of demographers and those who use their work, from the studies of Malthus in the 

eighteenth century to those of Pearl and Reed in the twentieth. But, perhaps as a result of 

the failure of these and other authors to correctly foretell the demographic future, 

demographers for most of the last century retreated into non-committal scenario-building 

projections: demographic forecasting based on formal statistical methods has developed 

only in the last two decades. Actuaries similarly are centrally concerned with the future 

survival of current lives, but again formal statistical methods of mortality forecasting are 

a comparatively recent development. 

 

The publication of the Lee-Carter method (Lee and Carter 1992) marked the beginning of 

a new era of interest in mortality forecasting.  Since then several other methods have been 

developed, but the Lee-Carter method is still regarded as among the best currently 

available and is now widely used. On the basis of this method, Tuljapurkar, Li and Boe 

(2000) claimed to have identified a universal pattern of constant rates of mortality decline 

in the world’s most developed countries, with rates of decline higher than those 

incorporated in official projections, leading to higher forecast levels of life expectancy. 

 

The Lee-Carter method uses matrix decomposition to reduce annual age specific death 

rates to a time-dependent index of level of mortality, and a set of time-independent 

parameters which modify the overall level at particular ages. It uses standard time series 

methods to model and forecast the level index over time. As with time-series-based 

forecasting in general, the philosophy of the Lee-Carter approach is that the past is the 

best guide to the future. Thus accurate modelling of past trends is an essential basis for 

forecasting future levels of mortality, and accurate modelling of the past variability of 

mortality is an essential basis for estimating the uncertainty of the forecast. In this 

context, the timescale becomes a central issue, in two ways: first, how much of the past 

provides the best guide to how much of the future? Second, how dependent is the answer 
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on the specific time in history when the forecast is made? Even in the context of a 

statistical forecast, judgment will be required to answer these questions, but the objective 

is to minimise the role of judgement and maximise the role of formal theory on the one 

hand, and formal evaluation on the other.  

 

Since the publication of the Lee-Carter method, enhancements have been proposed by 

Lee and Miller (2001) and Booth, Maindonald and Smith (2002). These address the 

choice of fitting period, the method for the adjustment of the time parameter and the 

choice of jump-off rates. The three variants of the Lee-Carter method have not been 

comprehensively evaluated. This paper presents the results of an evaluation of the Lee-

Carter, Lee-Miller and Booth-Maindonald-Smith variants based on data by sex for ten 

countries. The evaluation involves fitting the different variants to data up to 1985, 

forecasting for the period since that date, and comparing the forecasts with actual 

mortality in that period. This evaluation is not explicitly concerned with modelling the 

variability of forecasts themselves; explicit modelling of variability forms the basis of an 

alternative approach used by Keyfitz (1981), Keilman (1997) and others. 

 

The Three Variants 

 

The Lee-Carter method 

 

The Lee-Carter method of mortality forecasting combines a demographic model of 

mortality with time-series methods of forecasting. The method is generally interpreted as 

making use of the longest available time series of data. The Lee-Carter model of 

mortality is  

txtxxtx kbam ,,ln ε++=   ….(1) 

where txm ,  is the central death rate at age x in year t, tk  is an index of the level of 

mortality at time t, xa  is a general pattern of mortality by age, xb  is the relative speed of 

change at each age, and tx,ε  is the residual at age x and time t. The xa  are calculated as 

the average of txm ,ln  over time, and the xb  and tk  are estimated by singular value 

decomposition.  

 

The second-stage estimation involves adjusting tk  by refitting to total observed deaths. 

This adjustment gives greater weight to ages at which deaths are high, thereby partly 

counterbalancing the equalising effect of using logrates in the Lee-Carter model.  tk  is 

then extrapolated using the time series model  

1t t tk k d e
−

= + +  ….(2) 

where d is constant annual change in tk , and te  are uncorrelated errors. The combination 

of the standard errors in d and te  represents the uncertainty associated with a one-year 

forecast. This is used to produce probabilistic prediction intervals for the forecast values 

of tk . Forecast age-specific death rates are obtained using extrapolated tk  and fixed xa  

and xb . In this case, the jump-off rates (i.e. the rates in the last year of the fitting period 

or jump-off year) are fitted rates.     
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It should be noted that the Lee-Carter method does not prescribe the linear time series 

model of a random walk with drift for all situations. However, this model has been found 

to be the most appropriate in almost all cases; even where a different model was 

indicated, the more complex model was found to give results which were only marginally 

different to the random walk with drift (Lee and Miller 2001). Further, Tuljapurkar et al. 

(2000) found that the decline in mortality was constant, i.e. tk  was linear, for the G7 

countries, reinforcing the use of a random walk with drift as an integral part of the Lee-

Carter method. 

  

The Lee-Miller variant 

 

The Lee-Miller variant differs from the original Lee-Carter method in three ways:  

1. the fitting period is reduced to commence in 1950;  

2. the adjustment of tk  involves fitting to e(0) in year t;  

3. the jump-off rates are taken to be the actual rates in the jump-off year.  

 

In their evaluation of the Lee-Carter method, Lee and Miller (2001) noted that for US 

data the Lee-Carter model did not perform particularly well when using the fitting period 

1900-1989 to forecast the period 1990-1997. The main source of error was the mismatch 

between fitted rates for the last year of the fitting period or jump-off year (1989) and 

actual rates in that year; this jump-off error or bias amounted to 0.6 years in life 

expectancy for males and females combined (Lee and Miller 2001 p.539). Jump-off bias 

was avoided by setting xa equal to the actual rates in the jump-off year, equivalent to 

constraining the model such that tk  passes through zero in the jump-off year. 

 

It was also noted that the pattern of change in mortality was not fixed over time, as the 

Lee-Carter model assumes. Based on different age patterns of change (or xb  patterns) for 

1900-1950 and 1950-1995, Lee and Miller (2001) adopted 1950 as the first year of the 

fitting period. This ‘simple and satisfactory solution’ (Lee and Miller 2001 p.545) to 

changing age patterns of change had been adopted by Tuljapurkar et al. (2000). 

 

The adjustment of tk  by fitting to e(0) was adopted to avoid the use of population data as 

required for fitting to tD  (Lee and Miller 2001). 

 

The Booth-Maindonald-Smith variant 

 

The Booth-Maindonald-Smith variant also differs from the Lee-Carter method in three 

ways:  

1. the fitting period is chosen based on statistical goodness-of-fit criteria under the 

assumption of linear tk ;  

2. the adjustment of tk  involves fitting to the age distribution of deaths, ,x tD ;  

3. the jump-off rates are taken to be the fitted rates based on this fitting methodology.  
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Booth, Maindonald and Smith (2002) fitted the Lee-Carter model to Australian data for 

1907-1999 and found that the ‘universal pattern’ (Tuljapurkar et al. 2000) of constant 

mortality decline as represented by linear tk  did not hold. In addition, problems were 

encountered in meeting the assumption of constant xb  in the underlying Lee-Carter 

model. Taking linearity in tk  as a starting point, the Booth-Maindonald-Smith variant 

seeks to maximise the fit of the overall model by restricting the fitting period, which also 

results in the assumption of constant xb  being better met. The choice of fitting period is 

based on the ratio of the mean deviances of the fit of the underlying Lee-Carter model 

and of the overall linear fit: this ratio is computed for all fitting periods (that is for all 

years marking the start of the period, which always ends in the same year) and the period 

for which this ratio is substantially smaller than that for periods starting in previous years 

is chosen.  

 

The procedure for the adjustment of tk  was modified. Rather than fit to total deaths, tD , 

the Booth-Maindonald-Smith variant fits to the age distribution of deaths, ,x tD , using the 

Poisson distribution to model the death process and the deviance statistic to measure 

goodness of fit (Booth, Maindonald and Smith 2002).  The jump-off rates are taken to be 

the fitted rates under this adjustment.   

 

Data  

 

The data for this study are taken from the Human Mortality Database 

(<http://www.mortality.org> or <http://www.humanmortality.de>) and the Australian 

Demographic DataBank (Australian Centre for Population Research). Ten countries were 

selected giving 20 sex-specific populations for analysis. The selected countries are those 

with reliable data series commencing in 1941 or earlier. It was desirable to use only 

countries for which the available time series of data commenced somewhat earlier than 

1950 in order to maintain the full and consistent comparison of the three variants. Lee 

and Carter (1992) used US data for the full period available, 1900-1989.
2
 Therefore this 

multi-country analysis uses data for the period commencing in 1900 where possible. 

Though for some countries the data extend back to the nineteenth century, these were 

truncated at 1900. The Lee-Carter method could be interpreted as using all available data 

for the fitting period, but the use of pre-1900 data would both reduce comparability of 

methods across countries and necessitate a time series model with a non-linear trend 

which falls outside the scope of both applications to date and the current analysis. The 

selected countries are shown in Table 1 along with the dates used to define the fitting 

periods. 

 

The data consist of central death rates and mid-year populations by sex and single years 

of age to 110 years (except Australia to 100 years). For this analysis, data at older ages 

(age 90 and above) were grouped in order to avoid problems associated with erratic rates 

at these ages.

                                                 
2
 The US data by single years of age in the Human Mortality Database commence only in 1959; thus the 

US is not included in this study. Lee and Carter used data by five-year age groups. 
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Table 1:  Countries and years defining fitting and forecasting periods 

 

Country Startyear Endyear 

 LC LM BMS [m] BMS [f]  

Australia 1921 1950 1968 1970 2000 

Canada 1921 1950 1974 1976 1996 

Denmark 1921 1950 1968 1967 2000 

England and Wales 1900 1950 1968 1972 1998 

Finland 1941 1950 1971 1971 2000 

France 1900 1950 1971 1969 1997 

Italy 1906 1950 1968 1968 1999 

Norway 1900 1950 1969 1963 2000 

Sweden 1900 1950 1976 1969 2001 

Switzerland 1900 1950 1962 1962 2001 

Note: The fitting period is defined by startyear to 1985; the forecasting period is defined by 1986 

to endyear. 

 

Methods and measures 

The three variants were fitted to periods ending in 1985 and used to forecast death rates 

from 1986 to the last year of available data (1996 to 2001, depending on the country). 

The variants are evaluated by comparing point forecast log death rates with actual log 

death rates.   

 

Forecasting error is measured in terms of absolute error ( | forecast – actual | ) and error ( 

forecast – actual ). These are averaged over the relevant number of forecast years to 

produce the mean year absolute error and mean year error, which are indexed by age. 

They are also averaged over age to produce the mean age absolute error and mean age 

error, which are indexed by year. Averaging over both year and age produces two single 

indices of overall error: overall absolute error and overall error. These overall measures 

are averaged across countries to produce average overall absolute error and average 

overall error.  

 

In addition to these errors in log death rates, the error in life expectancy is examined. 

Error in life expectancy denotes the error in life expectancy by forecast year, and mean 

error in life expectancy denotes the error in life expectancy averaged over years. These 

measures are averaged across countries to produce average error in life expectancy and 

average mean error in life expectancy. 

 

Components of error are identified by comparing results based on relevant combinations 

of fitting period, adjustment method and jump-off rates. 

 

Uncertainty in the forecasts is derived from the standard error of tk  in the time series 

model (equation 2). Two components of uncertainty can be distinguished: uncertainty due 

to innovation, in other words te , and uncertainty in the drift. From equation (1), the 

standard error of ln txm ,  is equal to the standard error of tk  multiplied by the constant xb . 
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(Note that Lee and Carter (1992, p 670) found the standard errors of xa  and xb  to 

become less significant over forecast time in comparison to the standard error of tk  and 

that by 10 years into the forecast of US mortality 98 per cent of the standard error of e(0) 

was accounted for by uncertainty in tk .) As ln txm ,  are on a common scale for given age, 

it is possible to compare standard errors in ln txm ,  between variants, sex and countries for 

given ages, and hence for derived statistics covering the entire age range. Such 

comparisons are only slightly affected by the differing levels of mortality among the 20 

populations and different fitting periods of the three variants. 

 

Each ln txm ,  is a stochastic process determined by the stochastic process tk . Hence, 

ignoring error terms, tx,ε , the variations in ln txm ,  are perfectly correlated. This means 

that the prediction interval for life expectancy and other life table functions can be 

derived directly from the prediction interval for tk  without having to worry about the 

cancellation of errors. The approach adopted to comparing uncertainty in life expectancy 

is to take their 95 per cent prediction intervals. These are asymmetric due to the log 

transform and the transformation involved in the life table. Again, these prediction 

intervals are roughly comparable among populations.  

 

In what follows, the three variants are referred to as LC, LM and BMS. The 

corresponding three fitting periods are referred to by “long”, “1950” and “short”, 

reflecting the variable length in the LC and BMS variants and fixed length in LM. The 

three adjustment methods are referred to by “ tD ”, “e(0)” and “ ,x tD ”. 

  

Findings 

 

Comparison of variants 

 

Findings based on overall absolute errors for the 20 populations considered (Table 2) 

show that point estimates from LM and BMS are superior to those from LC.  Relative to 

LC (Table 3), most overall absolute errors are in the range 30 to 70 per cent.  Of the three 

variants, BMS has the lowest error for 15 of the 20 populations, as well as the lowest 

average error for both females and males.  

 

An additional finding is that LC consistently underestimates mortality, especially for 

females, as indicated by the negative average overall error (Table 4).  LM and BMS do 

not show a marked tendency to over- or under-estimate, and have overall errors closer to 

zero. 
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Table 2:   Overall absolute error by sex, variant and country 

 

Country Female  Male 

 LC LM BMS  LC LM BMS 

Australia 0.306 0.149 0.120  0.485 0.178 0.136 

Canada 0.242 0.094 0.107  0.296 0.097 0.105 

Denmark 0.307 0.238 0.215  0.184 0.217 0.190 

England and Wales 0.272 0.114 0.095  0.384 0.132 0.107 

Finland 0.667 0.276 0.265  0.559 0.207 0.193 

France 0.360 0.100 0.093  0.361 0.123 0.118 

Italy 0.355 0.152 0.151  0.258 0.177 0.189 

Norway 0.733 0.190 0.180  0.217 0.201 0.178 

Sweden 0.708 0.189 0.192  0.254 0.212 0.177 

Switzerland 0.529 0.208 0.186  0.266 0.191 0.172 

Average 0.448 0.171 0.160  0.326 0.174 0.156 

Note: Overall absolute error is the mean over age and year of the absolute error in log death rates. 
 

 

 

Table 3:   Overall absolute error relative to LC by sex, variant and country 

 

Country Female  Male 

 LC LM BMS  LC LM BMS 

Australia 1.00 0.49 0.39  1.00 0.37 0.28 

Canada 1.00 0.39 0.44  1.00 0.33 0.35 

Denmark 1.00 0.77 0.70  1.00 1.18 1.04 

England and Wales 1.00 0.42 0.35  1.00 0.34 0.28 

Finland 1.00 0.41 0.40  1.00 0.37 0.34 

France 1.00 0.28 0.26  1.00 0.34 0.33 

Italy 1.00 0.43 0.42  1.00 0.69 0.73 

Norway 1.00 0.26 0.25  1.00 0.93 0.82 

Sweden 1.00 0.27 0.27  1.00 0.83 0.70 

Switzerland 1.00 0.39 0.35  1.00 0.72 0.65 

Average 1.00 0.38 0.36  1.00 0.53 0.48 

Note: Overall absolute error is the mean over age and year of the absolute error in log death rates. The 

country average is the ratio of the average errors. 
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Table 4:  Overall error by sex, variant and country 

 

Country Female  Male 

 LC LM BMS  LC LM BMS 

Australia -0.170 0.052 0.004 -0.256 0.102 0.042 

Canada -0.221 -0.022 -0.058 -0.146 0.026 -0.055 

Denmark -0.231 0.040 0.038 0.074 0.133 0.111 

England and Wales -0.221 0.002 0.016 -0.247 0.035 0.030 

Finland -0.614 -0.167 -0.168 -0.410 0.004 -0.044 

France -0.272 0.020 0.030 -0.208 0.064 0.058 

Italy -0.265 -0.059 -0.083 -0.078 -0.001 -0.032 

Norway -0.675 -0.001 -0.041 0.121 0.094 0.106 

Sweden -0.644 -0.006 -0.047 -0.094 0.075 -0.006 

Switzerland -0.461 -0.015 -0.020 -0.121 0.027 0.029 

Average -0.377 -0.016 -0.033 -0.136 0.056 0.024 

Note: Overall error is the mean over age and year of the error in log death rates.  

 

Across the age range, patterns of error in the log death rates are similar across different 

countries so an average of all countries is shown in Figure 1.  Errors are small and show 

no consistent age pattern for LM and BMS apart from a tendency to overestimate for 

males at ages 45+.  The LC method produces large negative mean year errors at the 

younger ages, particularly for females, and small positive mean year errors at the older 

ages. This is due to the fact that the longer LC fitting period produces estimates of xb  that 

do not reflect the age pattern of change in the forecasting period. The dominance of the 

large negative errors at the younger ages accounts for the overall underestimation 

observed for LC in Table 4.  

 

Figure 1:   Mean year error by age, by sex and variant, averaged across countries 
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Note: Mean year error is the mean over years of error in log death rates. 
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Although LC underestimates overall mortality when measuring error in log death rates, 

this does not necessarily translate into an overestimate of life expectancy, due to the 

variation in the magnitude and sign of errors over age.  Table 5 shows that LC and, to a 

lesser extent, BMS do overestimate female life expectancy. All variants underestimate 

male life expectancy, due to the overstatement of mortality at the older ages observed in 

Figure 1.  For this measure, in contrast to the overall absolute error measure, LC results 

do not appear to be substantially inferior to those for LM and BMS: this is because the 

large negative and positive errors in different parts of the age range partly cancel.   

 

Table 5:   Mean error in life expectancy by sex, variant and country 

 

Country Female  Male 

 LC LM BMS  LC LM BMS 

Australia -0.70 -0.77 -0.11  -1.06 -1.53 -0.59 

Canada 0.33 0.30 0.32  -0.49 -0.53 0.18 

Denmark 1.26 0.49 0.40  -0.73 -1.10 -1.18 

England and Wales 0.04 -0.46 -0.42  -0.48 -0.97 -0.78 

Finland 0.79 0.48 0.82  0.14 -0.61 -0.11 

France -0.32 -0.43 -0.29  -0.40 -0.88 -0.76 

Italy -0.65 -0.52 -0.26  -1.24 -1.06 -0.74 

Norway 0.90 0.10 0.44  -1.33 -1.50 -1.13 

Sweden 0.61 0.12 0.15  -0.73 -1.33 -0.64 

Switzerland 0.76 0.33 0.57  -0.03 -0.46 -0.32 

Average 0.30 -0.04 0.16  -0.64 -1.00 -0.61 

Note: Mean error in life expectancy is error averaged over years. 

 

 

Over time, the pattern of mean age error varies by population. However, some consistent 

trends can be discerned. LC errors almost always start with a sizeable negative in the first 

year and remain negative throughout the entire duration of the forecast.  BMS errors are 

typically very close to zero in the first year of the forecast, indicating minimal jump-off 

error. Both LM and BMS usually remain reasonably close to zero for the duration of the 

forecast (though this is not the case for all populations).  Figure 2 averages across 

countries, but gives a sense of the general pattern.  All three variants give a reasonably 

good approximation of life expectancy for females over the forecast period (Figure 3). 

The 1950 startyear for LM gives the most appropriate rate of improvement in life 

expectancy: LC gives a slightly too gradual improvement (and also has a sizeable 

positive jump-off bias) and BMS is slightly too steep.  The rate of improvement in male 

life expectancy is underestimated by all three variants: the shorter fitting period for BMS 

gives the best results except in the very early years.  
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Figure 2:  Mean age error by forecast year, by sex and variant, averaged across 

countries 
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Note: Averages from 1996 to 2000 include a decreasing number of populations (see Table 1). Since 

only two countries have data to 2001, results have been shown to 2000 only. 

 

Figure 3:  Error in life expectancy by forecast year, by sex and variant, averaged 

across countries 
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Decomposition of error 

 

Error can be decomposed into three components corresponding to the source of error: 

fitting period, method of adjustment and jump-off rates. These are inter-related. The 

choice of method of adjustment is independent of the two other components. Choice of 

fitting period (or startyear) is independent of other considerations for LC and LM, but for 

BMS is dependent on the shape of fitted tk , which in turn is influenced to a small extent 

by the method of adjustment particularly where deviations from linearity occur (see 

Figure 4). For LC and BMS, jump-off bias is dependent on both fitting period and 

method of adjustment (see below).  

 

These error components are examined in order of dependence. The most dependent 

component, jump-off error is discussed first. After its removal, the effect of fitting period 

is discussed. Finally the net effect of adjustment method is considered. 

 

Figure 4:  tk  and adjusted tk  for Australia, both sexes combined, 1921-2000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jump-off bias 

 

Jump-off bias derives from the error in the fit of the underlying Lee-Carter model after 

adjustment of tk . In terms of log death rates (see equation 1), it is equal to tx,ε  in the 

jump-off year (i.e. 1985). For the LM variant, this error is zero because actual rates are 

used as jump-off rates.  In the LC and BMS variants, the size of tx,ε  in the jump-off year 

is determined by the goodness of fit of the Lee-Carter model which is dependent on the 

fitting period (or startyear) as well as the adjustment of tk .  
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Jump-off bias is thus a fixed quantity in terms of log death rates and death rates. Added to 

actual rates it results in a fixed bias in life expectancy in the jump-off year. However, the 

size of this bias in life expectancy will not remain constant over the forecast years 

because of the effects of entropy of the life table and of the combination of (positive and 

negative values of) xb  and jump-off bias in log death rates. 

 

Figure 5 shows size of jump-off bias in life expectancy for LC and BMS for the 20 

populations. The bias is much greater for LC than BMS, and greater for females than 

males. For females, LC bias is as large as 1.19 years (for Norway), whereas BMS bias is 

at most 0.15 years. While in most cases, jump-off bias for the LC variant is positive, it is 

less consistent in direction for BMS. 

 

Figure 5: Jump-off bias by sex and country, LC and BMS variants 
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Table 6 shows the effect of jump-off bias on overall absolute error for the LC and BMS 

variants. The magnitude of the average effect of bias is greatest for LC: the effect for 

BMS is only 4-7 per cent of that for LC. Jump-off bias also accounts for a greater 

proportion of average overall error in the LC variant than in the BMS variant: for LC, 

jump-off bias accounts for 57 per cent of overall error for females and 42 per cent for 

males compared with 11 and 4 per cent respectively for the BMS variant. Unlike LC, 

however, in the case of BMS jump-off bias serves to reduce average overall error, 

indicating that for absolute error, at least, fitted rates provide a better jump-off point than 

actual rates.  
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Table 6: Magnitude and relative size of effect of jump-off bias on overall 

absolute error by sex, variant and country 
 

Country Female   Male 

 Bias  
% of total 

error  Bias  
% of total 

error 

  LC BMS     LC BMS   LC BMS  LC BMS 

Australia 0.139 -0.021  45.4 -17.1  0.283 -0.004  58.5 -3.2 

Canada 0.132 -0.012  54.5 -11.6  0.184 0.002  62.3 1.9 

Denmark 0.085 -0.031  27.8 -14.2  -0.009 -0.028  -4.8 -14.6 

England and Wales 0.145 -0.018  53.4 -18.9  0.220 -0.008  57.2 -7.4 

Finland 0.308 -0.036  46.2 -13.7  0.222 -0.015  39.7 -7.7 

France 0.247 0.002  68.7 1.8  0.225 0.012  62.4 10.5 

Italy 0.184 0.008  51.7 5.0  0.078 0.023  30.4 12.4 

Norway 0.507 -0.023  69.2 -13.0  0.032 0.000  14.8 -0.2 

Sweden 0.495 -0.023  69.9 -12.1  0.062 -0.021  24.3 -12.0 

Switzerland 0.300 -0.025  56.7 -13.7   0.071 -0.017   26.7 -9.9 

Average 0.254 -0.018   56.8 -11.3   0.137 -0.006   42.0 -3.6 

 

 

Country comparison shows that there is general consistency within variant in the 

direction of the effect of jump-off bias, especially for LC and females, but considerable 

variation in magnitude. For males, the effect of bias for LC ranges from –0.009 for 

Denmark to 0.283 for Australia, while for BMS the range is –0.028 for Denmark to 0.023 

for Italy. Corresponding ranges for females are 0.085 for Denmark to 0.507 for Norway, 

and –0.036 for Finland to 0.008 for Italy. On average bias is greater for females than 

males. For LC, there is no pattern between the sexes, but for BMS there is a tendency for 

the sexes to follow similar patterns across countries.  

 

 

Fitting period 

 

The effect of different fitting periods is essentially measuring the effect of different 

trends in tk . Average overall absolute errors net of jump-off bias are shown in Table 7. 

The marginal effects due to fitting period are small in comparison with jump-off bias for 

LC but are commensurate with jump-off bias for BMS. It is seen that average overall 

absolute error is greatest for the long fitting period; in other words, reducing the fitting 

period results in reduced error. Whether the 1950 or short fitting period is most 

advantageous is unclear: for females, error is smallest for the fitting period starting in 

1950 while for males error is smallest for the short fitting period.  
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Table 7: Average overall absolute error net of jump-off error by sex, fitting 

period and method of adjustment  

 

Fitting Female  Male 

period Adjustment  Adjustment 

 tD  e(0) ,x tD   tD  e(0) ,x tD  

Long 0.194 0.189 0.190  0.189 0.187 0.186 

1950 0.171 0.171 0.171  0.175 0.174 0.174 

Short 0.180 0.178 0.179  0.167 0.162 0.162 

 

 

The short period would be expected to produce smaller errors if the short term trend were 

a better guide than the longer term trend to the future. Thus, use of the short period might 

be expected to result in smaller errors than use of 1950. The fact that this is not the case 

for females (in absolute error terms) suggests that the post-1985 trend differs from that in 

the 10-20 years prior to 1985. 

 

Country comparisons shown in Figure 6 show that the reduction in overall absolute error 

due to the use of a fitting period starting in 1950 or a short fitting period is fairly 

consistent across countries. Of the 20 populations, 14 show reductions in error due to 

reductions in length of fitting period, and in nine of these the short fitting period gives 

greater reductions in error. Denmark is a notable exception for both sexes, with both 

increases in error and greater increases for the short fitting period than the 1950 fitting 

period. It should be noted, however, that there were difficulties in using the method for 

Denmark with the chosen fitting and forecasting periods due to the erratic nature of tk  in 

the later part of the fitting period, stemming from a poor fit of the base model. For 

Swedish males, the reduced period also resulted in greater error; in this case the 1950 

fitting period produced the greater effect. In a further three cases, inconsistent results 

were obtained: for Canada and Sweden females, the 1950 fitting period improved 

forecast accuracy, while the short fitting period resulted in greater error; and for Norway 

males the reverse was true.  

 

Adjustment method 

 

Table 7 also allows comparison by method of adjustment. For the average overall 

absolute error measure, the effect of adjustment method is small compared with the effect 

of fitting period and jump-off bias, and in some cases is extremely marginal. For females, 

adjustment by e(0) produces least error for long and short periods while there is no 

difference for the fitting period starting in 1950. For males, adjustment by ,x tD  is 

marginally superior for the long fitting period. It can be concluded that adjustment 

method makes virtually no difference to the overall absolute error. This raises the 

question as to whether any adjustment improves the forecast over using unadjusted tk . 
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Figure 6: Effect of fitting period, marginal to LC, on overall absolute error by 

sex, country and method of adjustment 
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Country comparisons again indicate a high degree of consistency in the direction of 

effect, but considerable variation among countries. There is no consistency in patterns 

between the sexes. Taking all comparisons across the 20 populations and three fitting 

periods, the tD  adjustment gives the lowest error in 13 cases, the e(0) the lowest error in 

23 cases and the ,x tD  the lowest error in 24. 
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Figure 7: Effect of adjustment method by sex, country and fitting period 
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Uncertainty 

 

Uncertainty is examined by comparing the 95 per cent prediction intervals for life 

expectancy. Table 8 shows lower and upper interval width in 1996, the latest year for 

which data are available for all countries, for LM and BMS relative to LC. On average 

across countries, the intervals are reduced in width for both LM and BMS, despite the 

smaller number of observations. For females, the intervals are reduced by 20-40 per cent 

with the LM reduction being about 10 percentage points greater than the BMS. For 

males, the reduction is as great as 60-70 per cent with the BMS reduction being greater. 

Despite average reductions in uncertainty, BMS resulted in up to 36 per cent greater 
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uncertainty for females in Australia and Finland, while LM failed to reduce uncertainty in 

two populations. The country pattern in uncertainty is similar in males and females. 

 

In general, the smaller the prediction interval the better the method. However, if a variant 

were to over-fit the data, it would artificially reduce the standard error.
3
 This is 

potentially more of a problem for BMS than LC and LM because of the selection of a 

shorter period in order to maximise the linear fit. However, as Table 8 shows, there is no 

consistent difference between LM and BMS in the amount of reduction in prediction 

width and the differences between these two variants are not great. Hence, either both 

BMS and LM over-fit the data or this is not an important issue. The latter view seems 

likely. 

 

Table 8:  Width of lower and upper prediction intervals for forecast life 

expectancy in 1996 relative to LC intervals by sex, variant and 

country  

 

Country Female  Male 

 
Lower 

interval  
Upper 

interval  
Lower 

interval  
Upper 

interval 

  LM BMS  LM BMS  LM BMS  LM BMS 

Australia 0.95 1.31  1.00 1.36  0.27 0.35 0.36 0.46 

Canada 0.79 0.79  0.81 0.81  0.88 0.65 0.91 0.69 

Denmark 0.68 0.66  0.72 0.67  1.01 0.07 0.63 0.05 

England and Wales 0.50 0.53  0.56 0.59  0.48 0.48  0.55 0.55 

Finland 0.87 1.17  0.90 1.25  0.45 0.50 0.53 0.59 

France 0.41 0.43  0.45 0.47  0.17 0.12 0.21 0.15 

Italy 0.40 0.46  0.44 0.50  0.30 0.26 0.33 0.30 

Norway 0.88 0.87  0.95 0.97  0.48 0.39 0.31 0.45 

Sweden 0.63 0.77  0.69 0.82  0.37 0.47 0.42 0.55 

Switzerland 0.58 0.66  0.62 0.71  0.39 0.43  0.42 0.47 

Average 0.61 0.70  0.66 0.76  0.39 0.32  0.40 0.38 

 

 

The only true test of the forecast uncertainty is out-of-sample forecast accuracy. 

Examination of whether actual life expectancy falls within the prediction interval for all 

years shows that for females there are only nine instances where this is not the case. 

These all occurred for the lower prediction interval of the LC variant in the first five 

years of the forecast: Denmark in 1986, Norway in 1986 to 1990, Sweden in 1986 and 

1988 and Switzerland in 1986. For males, a different pattern occurs. First the LC 

prediction interval almost always contains actual life expectancy (except for Canada) 

while for LM and BMS there are a significant number of exceptions involving almost all 

countries. These all occur for the upper prediction interval and are mostly in the later 

years of the forecast. These are due to the unprecedented rapid decline in mortality that 

occurred among males during the forecast period in the countries concerned. In total, 

                                                 
3
 It is also possible to underestimate the standard error due to model mis-specification. 
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BMS has fewer occurrences than LM and the magnitude of excess over prediction 

interval is smaller for BMS.  

 

While for females, these results may indicate that the prediction intervals for LM and 

BMS could be too wide, for LC and all three variants for males the combination of jump-

off bias and error in drift preclude determination of the accuracy of the prediction 

intervals. 

 

Conclusion 

 

It has been shown that the LM and BMS variants are superior to LC in both forecast 

accuracy and width of prediction interval. The decomposition of error has demonstrated 

that jump-off bias is a substantial source of error for LC. In addition, the LC adjustment 

by fitting to tD  has been shown to be marginally inferior to the other two adjustment 

methods. It has also been shown that BMS performs better than LM in terms of overall 

absolute error in 15 out of the 20 populations considered. However in overall error terms, 

LM is superior for females and BMS superior for males. The prediction intervals for LM 

and BMS are similar and their evaluation inconclusive.  

 

These results are limited to the forecasting period adopted. Further research is needed to 

determine whether they may be more widely generalised to other forecasting periods, 

particularly in the post-WW2 era. The consistency within sex indicates that it is likely 

that they may be generalised to other developed countries.  
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