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Abstract

Newest developments in the theoretical foundation of the Grade of
Membership (GoM) analysis performed by authors bring new insights into
the value of GoM analysis, providing new ways to interpret estimates as
well as new numerical methods to obtain estimates.

In this presentation we discuss the most important results obtained
recently and apply the new methodology to the National Long Term Care
Survey (NLTCS) data. We analyze the obtained results by providing an
interpretation for the estimates and by investigating the errors arising
from the limited size of the sample. This analysis shows that GoM model
performs well in the case considered here.

1 Introduction

The grade of membership analysis was introduced in [10, 11], and later developed
in [8] and other articles. Another possible point of view on GoM analysis was
developed in [9]. Recently authors developed a new approach (described in
details in [4].) This presentation summarize most important facts of [4] and
demonstrates usefulness of the method by examining National Long Term Care
Survey data.

The grade of membership (GoM) analysis considers a number of discrete
measurements on individuals. The goal of GoM analysis is to derive some prop-
erties of a population as well as of an individual based on results of these mea-
surements. In the sense that it tries to uncover the underlying hidden structure,
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GoM relates to the latent structure analysis [1, 2, 3]. However, GoM uses dif-
ferent algorithms and is based on different mathematical foundation.

A good example of the applicability of GoM is in making a medical diagnosis.
A physician has to make a conclusion about health state of a patient based on a
number of measurements, which include both objective measurements (such as
measuring blood pressure) and subjective measurements (such as asking specific
questions about health.) Decision making requires knowledge about the popu-
lation (what does it mean “to be healthy”, or “to have this disease”) derived
from results of similar measurements performed on other individuals.

The ability to derive properties of a population is provided by sampling a
sufficient number of individuals, whereas the ability to derive properties of an
individual is provided by a sufficiently large number of measurements on each
individual (in practice, several dozen.) The situation is complicated by the fact
that the measurements, on the one hand, should relate to the same underlying
problem (individual state,) while, on the other hand, must be different (to avoid
bias for a particular individual.) Thus there is no obvious relation between
results of different measurements.

2 Theoretical results

2.1 The formulation of the problem

GoM analysis considers J discrete measurements, represented by random vari-
ables X1, ..., X, with the set of outcomes of j*® measurement being {1, ..., L;}.
The main assumption of GoM is: for some K, there exists a K-dimensional ran-
dom vector G such that for every j a regression of Y; on G is linear. Here Y; is
an Lj;-dimensional random vector, Y; = 1; if X; = (where 1; denotes a vector
which has I*" component equal to 1, and all other components equal to 0.)

This essentially means that one can consider an |L| = Ly + -+ + Ly-
dimensional random vector of probabilities 3 = (1)1, where j ranges from
1 to J, and for every j, ! ranges from 1 to L;. Realizations of this random
vector are distribution laws for individual random vectors X* = (X1i,...,X5),
ie. Pr(X} =1) = 3. Let ug be a probabilistic measure describing the dis-
tribution of 8. Then the linear regression hypothesis is equivalent to an as-
sumption that a support of ug is a K-dimensional linear subspace @ of RILL
Let A = {\1 ... \E} \F = ()\g?l)jl, be any basis of @, and for g € Q, let
9 = (9 )k=1,... k be its coordinates in basis A. Then the random vector G is the
random vector 3 written in coordinates g. Let uy be a measure g written in
coordinates g.

Another assumption made in GoM analysis is that random variables X1,..., X
are conditionally (or locally) independent, i.e.

Pr(Xy =0 A AX;=0;|G=g)=]][Pr(X; =¢;| G=yg) (1)
J

This assumption is widely used in the latent structure analysis. One pos-
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sible motivation for such an assumption is that all “randomness” in individual
random variables X{,..., X’ comes from errors in measurements, and error in
one measurement does not depend on error in another one.

Let ¢ = (¢1,...,¢;) be an integer vector with 0 < ¢; < L;. Such a vector
represents the outcome of J measurements, and £; = 0 means that we do not
take into account the outcome of the j*" measurement. Thus, a value of ;=0
in a vector £ means that the vector is a marginal vector across all values of
the j*" measurement. Let £° be a set of all such vectors, and for every J C
{1,...,J} let L1 be a set of vectors having 0’s exactly on places from J. Let
v = (v1,...,vk) be an integer vector with vx > 0, and for every integer J' > 0
let V[J'] be a set of such vectors satisfying the additional condition »_, vy = J'.

In this language, the values of interest are unconditional moments of the
distribution g

Mo(pp) / H Bie; 1 (dB) (2)

j:4;#0
and conditional moments of distribution p,

v _ 10,202k gEA)
61 x =0 = [ Lok =40 iao ®)

The unconditional moments Mg(,u,g) are the probabilities of obtaining the
response pattern ¢ (under assumptions of the model.) Thus, frequencies of re-
sponse patterns £ in a sample, denoted fy, are consistent and efficient estimators
for unconditional moments M;(ug).

The conditional moments E(GY | X = £) express our knowledge of the state
of the individual (represented by random vector G) based on outcomes of the
measurements. These values are not directly estimable from the observations.
The goal of GoM analysis is to obtain estimates for these conditional moments.

The conditional moments £(G" | X = ¢) provide the basis for a parsimonious
summary of the data under the assumption of the GoM model. If the model
fits to data, the conditional moments provide predicted outcomes to use for a
goodness of fit test and a model to forecast future values.

2.2 The main system of equations

We have shown in [4] that the GoM model defined above is fully described by a
system of equations (with respect to variables oz?l and h})

Sop kbt = by J elo.J—1], veV[J],
JCLJ) T >0, tec
jeJ, lel.Lj] (4)
h§07“"0) :i]DWZ, = EO
v )!
Soeviy QR =1, J € [0..]]
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More precisely,

1. Any basis A of @ together with conditional moments E(G¥ | X = ¢)
calculated in this basis give a solution of (4) ()\?l should be substituted

for aé’?l, and My(ug) - E(GV | X = ¢) should be substituted for h}.)

2. Under mild conditions, every solution of (4) gives a basis of @ and condi-
tional moments calculated in this basis.

Consequently, we can obtain conditional moments by solving this system of
equations. We see that the observed moments, My (u3), play a crucial role in the
actual estimation of the GoM model. Two important points in task of fitting a
model are choosing the dimensionality K and estimating a basis A. We detail
each of these in the following section.

2.3 The moment matrix

Let us write a vector of moments (Mjp;);; together with incomplete vectors
(Ml;/Hj )ji:j£5', €tc., as columns of a matrix, with places for which we do not
have moments filled by question marks. We refer to this incomplete matrix as
the moment matriz. The moment matrix contains a column for every ¢ € £9.
Figure 1 gives an example of a portion of a moment matrix for the case J = 3,
Ly = Ly = L = 2. Columns in this matrix correspond to ¢ = (000), (100),
(200), (010), (020), (001), (002), (110); other columns are not shown.

M 100 ? ? M0y Ma20) Moy Moo ?
M 200 ? 7 Mi10) M220y M01)y M(202) ?
Mooy Moy M0 ? ? M1y M1z ?
Mo20)y M(20) M220) ? ? M21y Mo22) ?
Mooy Moy Mooy Moy M2 ? ? M1y
Moo2y Mo2) M02) M2y M2z ? ? M112)

Figure 1: Example of moment matrix

Note that certain moments (which are replaced by question marks in the
moment matrix) are not observable. The reason for this is that we do not have
possibility to perform a measurement on an individual multiple times indepen-
dently, and since individuals are heterogeneous (have different probabilities of
outcomes of measurements,) we do not have multiple realizations of independent
identically distributed random variables.

For a moment matrix M let its completion M be a matrix obtained from
M by replacing question marks by arbitrary numbers. We have shown that
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the moment matrix always has a completion, in which all columns belong to @
(recall that @ is a K-dimensional subspace containing all individual vectors of
probabilities, (ﬂ]’l) ji-) Thus, if the moment matrix has sufficient rank (which is
the case in most practical situations,) a basis of @ may be obtained from this
matrix. And we have an estimator of the moment matrix in form of frequency
matrix.

In particular, the (uncompleted) moment matrix gives a way to estimate
lower boundary for the dimensionality of the GoM problem, K: it may not be
lower then rank of nonsingular minor of the moment matrix. In practice, we
will use the frequency matrix, which is an approximation of the moment matrix.
In this case a minor will be considered as nonsingular only if it is nonsingular
for a range of values of the moments, say all moments within a two standard
deviation interval of the observed frequencies.

2.4 Maximum likelihood considerations

The second issue arising from the system of equation (4) is the method of es-
timating the basis and conditional moments with respect to this basis using
the system (4). To date we have not implemented a stable method based on
(4). However, an approximation can be derived which is based on the original
formulation of a GoM estimation algorithm as described in [10]. It suggested
that estimates for basis A and conditional expectations £(G | X = ¢) should
be obtained by maximization of the function:

I1 (1;[ ggiwﬁw;) (5)

i

where i ranges over individuals in the sample, and x; is the outcome of ;'
measurement on " individual.

This approach was motivated by maximum likelihood reasoning: if a vector
9i = (gi1,--.,9ix) is the hidden state (i.e. the value of random vector G) of
individual 7, then (5) is the probability of observing outcomes .

As estimates for g; may depend only on outcomes of measurements for the
ith individual, they are equal for individuals with equal outcomes. Thus, (5)
may be rewritten as:

TT(TIY o) ©)
V4 ik

But these likelihood functions contain incidental parameters (gg in case of
(6) and g, in case of (5),) and therefore the estimates need not be consistent;
and, in general, they are not. Nevertheless, (5) and (6) may be used to obtain
reliable estimates, in the following sense.

By straightforward but tedious algebraic steps one may show that solving
main system of equations (4) is equivalent to maximization of the function
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(T seerts,)” )
4 7 k

where (U] denotes vector ¢ with j*" component replaced by 0.

Furthermore, recently we have shown (manuscript in preparation) that when
J tends to infinity, the point where (6) reaches its maximum converges to the
point where (7) reaches its maximum. Thus, for sufficiently large number of
measurements, maximization of (6) (or, equivalently, (5)) provides approximate
estimates for the values of interest (a basis A and conditional expectations with
respect to it.) Numerical results reported below are derived by maximization of
(6) and using the estimates as solution to (7).

The advantage of maximizing (6)) is that there exists a well established and

efficient numerical procedure. We are working on new numerical procedures
based on (4) and (7).

3 Application to NLTCS data

We applied the above theoretical consideration to the National Long Term Care
Survey (NLTCS) data.

The National Long Term Care Survey is a longitudinal survey designed to
study changes in the health and functional status of older Americans (aged 65+).
It also tracks health expenditures, Medicare service use, and the availability of
personal, family, and community resources for caregiving. The survey began in
1982, and follow-up surveys were conducted in 1984, 1989, 1994, and 1999. A
sixth follow-up survey will be conducted during 2004. A detailed description of
NLTCS may be found at http://nltcs.cds.duke.edu/.

We considered a sample of approximately 5,000 individuals from 1999 NLTCS
wave, and selected 27 questions, which characterize disability level with respect
to activities of daily living, instrumental activities of daily living, and physical
impairment. Details about these questions may be found in [5, 6, 7].

Every individual is subject to 27 questions, 20 of which have 2 possible
answers, and 7 have 4 possible answers. Thus, we have L; = -+ = Loy = 2,
L21 = :L27:4, and |L| = 68.

3.1 Analysis of the moment matrix

The first task is to find out the dimensionality of the GoM problem, K. As it
was mentioned above, K is the rank of the moment matrix, and thus it might
be estimated as the rank of the frequency matrix.

We used the singular value decomposition to estimate the rank of the fre-
quency matrix (more precisely, we used a matrix, which elements are numbers of
corresponding response patterns in the sample — which is size-of-sample times
bigger then frequency matrix.) As the frequency matrix is incomplete, we actu-
ally made decomposition not of the whole matrix, but of its left bottom corner
of size 31 x 31. The singular values are given in table 1.



GoM: Newest Development with Application to NLTCS Data 7

Table 1: Singular values of the frequency matrix

o1 | 39292.861 || o7 | 90.993 || 013 | 28.077
g9 4780.040 g8 70.721 014 20.488
g3 791.574 J9 56.614 J15 24.379
o4 212.424 || o190 | 49.728 || 016 5.564
(251 162.809 011 36.629 g17 0.000
06 119.109 || 012 | 30.257 || o158 | 0.000

The computations show that the hypothesis K = 6 fits the data under the
assumption that frequencies are in two standard deviations interval from true
moments. However, there is no significant gap between the 6" and 7*" singular
numbers. This suggests that a support of distribution is an ellipsoid of full
dimensionality which is thinner in higher dimensions, and choosing a particular
value for K approximates this ellipsoid by lower-dimensional ellipsoid obtained
from the true one by collapsing a number of smaller axis.

3.2 Comparing classic estimates with the frequency ma-
trix

We compare estimates obtained by maximization of (6) with the frequency ma-
trix.

In the GoM model, columns of frequency matrix belongs to the linear span of
vectors A, ..., M. Thus, quality of approximation is characterized by closeness
of columns of frequency matrix to the above linear span.

We calculate angles between columns of the frequency matrix and linear span
of A1, ..., A€, The table 2 contains for the first 12 columns of frequency matrix
(a) euclidean length of a column, (b) euclidean distance between a column and
the linear span; and (c) angle (in degrees) between a column and linear span.

Another applicable test is how close is the moment matrix generated by the
model parameters to the observed frequency matrix. We generate the moment
matrix from the model parameters by formula:

M= 53 (T Yot ®)

i jil£0 k

and compare the generated moment matrix with the frequency matrix derived
from the data. The result of comparison is given in the table 3. Cells of the table
correspond to the 10 x 6 fragment of the moment matrix; values are differences
between calculated moments and frequencies expressed in standard deviations.
The bottom row of the table gives averages over the columns; the average over
the whole matrix is 1.840.

One can see that the model moments fit the observed data pretty well except
several cases.
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Table 2: Angles between linear span of A\, ..., \X and columns of the frequency
matrix

Length | Distance | Angle
4.19464 | 0.16533 | 2.25889
4.00205 | 0.42757 | 6.13302
4.26949 | 0.16902 | 2.26887
3.75365 | 0.33482 | 5.11746
4.51090 | 0.15884 | 2.01796
3.75087 | 0.25945 | 3.96634
4.59338 | 0.16875 | 2.10537
3.87431 | 0.40055 | 5.93423
4.39225 | 0.15977 | 2.08467
3.74094 | 0.24287 3.72234
4.64082 | 0.15478 | 1.91123
3.75590 | 0.33040 | 5.04680
4.46987 | 0.15564 | 1.99548

3.3 Distribution of individual states

The figures 2 and 3 show a 2-dimensional projections of distribution of individ-
ual’s hidden state (described by the random vector G.) We give only 2 of the
15 possible projections of 6-dimensional picture into a 2-dimensional coordinate
plane. From these figures we see that the values of conditional expectations
vary considerably across individuals indicating a high level of heterogeneity.

3.4 Correlation with diseases

To demonstrate validity of GoM analysis, we investigated correlation between
the estimated hidden state represented by random vector G and 7 diseases:
diabetes, coronary diseases, renal diseases, stroke, cancer, Alzheimer disease,
and Parkinson disease. We used linked Medicare data collected from 1989 to
2001 to obtain medical diagnoses for individuals in the sample.

We first clusterize hidden states using standard cluster analysis algorithm.
We calculate the distance between cases as conventional Euclidean distance in 6-
dimensional space, and distance between clusters as Euclidean distance between
their centers of gravity. For demonstrational purposes, we chose a reduction to
6 clusters. For analysis with the number of clusters ranging from 5 to 12 there
are no significant differences in the overall picture.

For every disease we calculate frequency of the disease in the sample and in
the each cluster. The results are presented in figures 4 through 10. In these
figures the average over the entire sample is plotted as a flat line. The means
and standard deviations for each cluster are plotted as a point with associated
confidence lines.
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Table 3: Relative differences between calculated moments and frequencies (in
standard deviations)

2.870 | 0.665 | 4.308 | 1.167 | 0.806 | 0.765
2.870 | 1.170 | 4.705 | 0.155 | 2.653 | 4.211
0.069 | 0.022 | 0.209 | 0.325 | 3.760 | 0.195
0.069 | 0.196 | 1.794 | 0.929 | 2.516 | 3.741
0.425 | 0.306 | 2.801 | 0.475 | 10.636 | 0.366
0.425 | 0.090 | 2.344 | 1.010 | 2.736 | 3.705
0.169 | 0.650 | 2.213 | 0.750 | 3.325 | 1.399
0.169 | 0.539 | 0.575 | 1.245 | 2.846 | 3.287
0.979 | 0.173 | 0.934 | 0.894 | 0.500 | 2.798
0.979 | 0.080 | 1.324 | 0.074 | 1.176 | 2.310
2.686 | 0.729 | 2.941 | 1.224 | 2.623 | 2.466

One can see that there exists a significant correlation between the clustered
hidden state and diseases in all cases except cancer. Correlation is higher for
diseases that contribute more to disability, as one would expect. Of course, there
is no functional dependency here, as NLTCS questionary was not designed to
diagnose these diseases.

4 Discussion

In this presentation we have discussed the implementation of the GoM model.
As shown in [4], and verified here, the essence of a GoM analysis is representable
in a system of equations (4) relating the observed unconditional moments with
hidden conditional moments. Examination of this system of equations shows a
parallel with principal component methods for continuous data. The difference
lie in the fact that data in a GoM analysis are discrete with no ordinal scale
required and, consequently, the “factorization” into the principal axes entails
moments of order higher then two. Thus a GoM analysis will determine a
coordinate system and a set of coordinates for each individual that explains the
most “variation.” Variation here is not determined by a least squares measure
but rather by a quasilikelihood model given by (7).

In this paper we used approximation provided by the classical algorithm for
maximization of the likelihood introduced in [10]. Although direct numerical
methods of solving (4) or (7) are possible, such have not been worked out at
this point.

The NLTCS data used to illustrate the methodology confirm our intuition.
Quality of the constructed model was verified by two methods: numerical anal-
ysis of how close are columns of the frequency to the subspace predicted by the
model, and how model moments deviate from the observed frequencies. Both
tests demonstrate reliability and good predictive power of the model. Estima-
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tion of the rank of the moment matrix (using singular value decomposition)
allows us to determine the dimensionality of the GoM problem. This estimation
provides strong statistical evidence in favor of dimensionality K = 6 used in
other investigations of the NLTCS data.

The GoM analysis (the factorization into important components) split the
individuals into into groups with very different disease outcomes. Recall, how-
ever, that the variables used here did not include variables commonly considered
as risk factors for cancer.

From the practical point of view, the most important theoretical result is re-
lation between the moment matrix and subspace that supports the distribution
under question. It provides easy and vivid tests for hypothesis about dimen-
sionality of distribution, and allows to justify results of other methods to obtain
a basis of the support of the distribution.

The use of moment matrix also allows to handle missing data easily, as
frequencies of response patterns may be calculated based only on a subset of
individuals who gave all required answers.

Analysis of figures 2 and 3 (as well as more elaborated mathematical anal-
ysis) shows that vectors g;, representing individual hidden state, occupy 5-
dimensional body — rather than lower-dimensional manifold. This shows that
linear regression hypothesis is suitable for the case of NLTCS data, and fur-
ther reduction of dimensionality is not possible. If these hidden states occupy
lower-dimensional manifold (for example, 2-dimensional sphere in 3-dimensional
space), the further reduction of dimensionality is possible, but it requires to em-
ploy nonlinear regression hypothesis. The case of nonlinear regression is subject
for the future work.

Another important feature of GoM analysis is that it converts discrete initial
data into continuous state. It is especially useful when one investigates changes
over time.
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Figure 2: Distribution of hidden state: coordinates 2 and 6
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Figure 3: Distribution of hidden state: coordinates 4 and 5
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Figure 4: Frequencies of diabetes in the sample (horizontal line) and in the
clusters
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Figure 5: Frequencies of coronary diseases in the sample (horizontal line) and
in the clusters
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Figure 6: Frequencies of renal diseases in the sample (horizontal line) and in
the clusters
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Figure 7: Frequencies of stroke in the sample (horizontal line) and in the clusters
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Figure 8: Frequencies of cancer in the sample (horizontal line) and in the clusters
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Figure 9: Frequencies of Alzheimer disease in the sample (horizontal line) and
in the clusters
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Figure 10: Frequencies of Parkinson disease in the sample (horizontal line) and
in the clusters



